817 research outputs found

    Moisture interaction and stability of ZOT (Zinc Orthotitanate) thermal control spacecraft coating

    Get PDF
    Two of the many performance requirements of the zinc orthotitanate (ZOT) ceramic thermal control paint covering parts of the Jupiter-bound Galileo spacecraft are that it be sufficiently electrically conductive so as to prevent electrostatic discharge (ESD) damage to onboard electronics and that it adhere to and protect the substrate from corrosion in terrestrial environments. The bulk electrical resistivity of ZOT on an aluminum substrate was measured over the ranges 22 C to 90 C and 0 percent RH to 100 percent RH, and also in soft (10 (minus 2) Torr) and hard (10 (minus 7) Torr) vacuums. No significant temperature dependence was evident, but measured resistivity values ranged over 9 orders of magnitude: 10 to the 5th power ohm-cm at 100 percent RH greater than 10 to the 12th power ohm-cm in a hard vacuum. The latter value violates the ESD criterion for a typical 0.019 cm thick coating. The corrosion study involved exposing typical ZOT substrate combinations to two moisture environments - 30 C/85 percent RH and 85 C/85 percent RH - for 2000 hours, during which time the samples were periodically removed for front-to-back electrical resistance and scratch/peel test measurements. It was determined that the ZOT/Al and ZOT/Mg systems are stable (no ZOT delamination), although some corrosion (oxide formation) and resistivity increases observed among the ZOT/Mg samples warrant that exposure of some parts to humid environments be minimized

    Thermodynamics predicts how confinement modifies hard-sphere dynamics

    Full text link
    We study how confining the equilibrium hard-sphere fluid to restrictive one- and two-dimensional channels with smooth interacting walls modifies its structure, dynamics, and entropy using molecular dynamics and transition-matrix Monte Carlo simulations. Although confinement strongly affects local structuring, the relationships between self-diffusivity, excess entropy, and average fluid density are, to an excellent approximation, independent of channel width or particle-wall interactions. Thus, thermodynamics can be used to predict how confinement impacts dynamics.Comment: 4 pages, 4 figure

    Equilibrium crystal shapes in the Potts model

    Full text link
    The three-dimensional qq-state Potts model, forced into coexistence by fixing the density of one state, is studied for q=2q=2, 3, 4, and 6. As a function of temperature and number of states, we studied the resulting equilibrium droplet shapes. A theoretical discussion is given of the interface properties at large values of qq. We found a roughening transition for each of the numbers of states we studied, at temperatures that decrease with increasing qq, but increase when measured as a fraction of the melting temperature. We also found equilibrium shapes closely approaching a sphere near the melting point, even though the three-dimensional Potts model with three or more states does not have a phase transition with a diverging length scale at the melting point.Comment: 6 pages, 3 figures, submitted to PR

    Properties of Interfaces in the two and three dimensional Ising Model

    Full text link
    To investigate order-order interfaces, we perform multimagnetical Monte Carlo simulations of the 2D2D and 3D3D Ising model. Following Binder we extract the interfacial free energy from the infinite volume limit of the magnetic probability density. Stringent tests of the numerical methods are performed by reproducing with high precision exact 2D2D results. In the physically more interesting 3D3D case we estimate the amplitude F0sF^s_0 of the critical interfacial tension Fs=F0stμF^s = F^s_0 t^\mu to be F0s=1.52±0.05F^s_0 = 1.52 \pm 0.05. This result is in good agreement with a previous MC calculation by Mon, as well as with experimental results for related amplitude ratios. In addition, we study in some details the shape of the magnetic probability density for temperatures below the Curie point.Comment: 25 pages; sorry no figures include

    Feasibility of Using Cranial Electrotherapy Stimulation for Pain in Persons with Parkinson's Disease

    Get PDF
    Objectives. To assess the feasibility of treating musculoskeletal pain in the lower back and/or lower extremities in persons with Parkinson's disease (PD) with cranial electrotherapy stimulation (CES). Design. Randomized, controlled, double-blind trial. Setting. Veterans Affairs Medical Center, Community. Participants. Nineteen persons with PD and pain in the lower back and/or lower extremities. Thirteen provided daily pain rating data. Intervention. Of the thirteen participants who provided daily pain data, 6 were randomly provided with active CES devices and 7 with sham devices to use at home 40 minutes per day for six weeks. They recorded their pain ratings on a 0-to-10 scale immediately before and after each session. Main Outcome Measure. Average daily change in pain intensity. Results. Persons receiving active CES had, on average, a 1.14-point decrease in pain compared with a 0.23-point decrease for those receiving sham CES (Wilcoxon Z = −2.20, P = .028). Conclusion. Use of CES at home by persons with PD is feasible and may be somewhat helpful in decreasing pain. A larger study is needed to determine the characteristics of persons who may experience meaningful pain reduction with CES. Guidelines for future studies are provided

    FoFi: The Development of a Handheld Monitoring Device in Predicting Naturally Occurring Forest Fires

    Get PDF
    Forest fires, which are natural or artificial burning of woodlands, negatively affect people and the environment. In the Philippines, Cordillera is one of the hotspots for forest fires, with approximately 122 forest fire incidents. Thus, developing a monitoring device for the early prevention of forest fires would reduce these incidents\u27 frequency. This research aimed to create a handheld prototype device, FoFi, that gathers quantitative data which can be used with the Department of Natural Resources\u27s data science and predictive analytics. Using an Arduino Microcontroller and sensors, the device will collect and send data. Two phases were conducted to create a monitoring prototype device for predicting forest fires. According to the results, the temperature and humidity (DHT-22) sensor showed reliable data since it can detect temperature under normal conditions, having a mean of 30.65°C; also, it precisely recorded the relative humidity with a mean of 7.89%. The Global Positioning System (GPS) module obtained a mean error of 7.251 m, which exhibited accuracy in detecting GPS coordinates. Additionally, the Globe SIM showed efficiency for Global Systems for Mobile (GSM) communication since the mean length of time for sending a message is 5.022 s. On the other hand, the gas sensor (MQ-2) and photoresistor lacks sensitivity when used; thus, a more sensitive sensor is recommended. In conclusion, the handheld device was able to achieve its purpose of monitoring forest fires

    Schools and education

    Get PDF
    Children in the North are more likely to live in poverty than those in the rest of England – and increasingly so. Poverty is the lead driver of inequalities between children in the North and their counterparts in the rest of the country, leading to worse physical and mental health outcomes, educational attainment, and lower lifelong economic productivity. The COVID-19 pandemic has made this situation worse. Although the full impact is not yet known, modelling suggests that, without intervention, the outlook is bleak. To address the North-South productivity gap we must tackle the stark inequalities evidenced in this report, put in place a child-first place-based recovery plan, and enable the children of the North to fulfil their potential

    Nonmonotonical crossover of the effective susceptibility exponent

    Full text link
    We have numerically determined the behavior of the magnetic susceptibility upon approach of the critical point in two-dimensional spin systems with an interaction range that was varied over nearly two orders of magnitude. The full crossover from classical to Ising-like critical behavior, spanning several decades in the reduced temperature, could be observed. Our results convincingly show that the effective susceptibility exponent gamma_eff changes nonmonotonically from its classical to its Ising value when approaching the critical point in the ordered phase. In the disordered phase the behavior is monotonic. Furthermore the hypothesis that the crossover function is universal is supported.Comment: 4 pages RevTeX 3.0/3.1, 5 Encapsulated PostScript figures. Uses epsf.sty. Accepted for publication in Physical Review Letters. Also available as PostScript and PDF file at http://www.tn.tudelft.nl/tn/erikpubs.htm
    corecore