63 research outputs found

    Justification of Filter Selection for Robot Balancing in Conditions of Limited Computational Resources

    Get PDF
    The paper considers the problem of mathematical filter selection, used for balancing of wheeled robot in conditions of limited computational resources. The solution based on complementary filter is proposed

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal

    EPIdemiology of Surgery-Associated Acute Kidney Injury (EPIS-AKI) : Study protocol for a multicentre, observational trial

    Get PDF
    More than 300 million surgical procedures are performed each year. Acute kidney injury (AKI) is a common complication after major surgery and is associated with adverse short-term and long-term outcomes. However, there is a large variation in the incidence of reported AKI rates. The establishment of an accurate epidemiology of surgery-associated AKI is important for healthcare policy, quality initiatives, clinical trials, as well as for improving guidelines. The objective of the Epidemiology of Surgery-associated Acute Kidney Injury (EPIS-AKI) trial is to prospectively evaluate the epidemiology of AKI after major surgery using the latest Kidney Disease: Improving Global Outcomes (KDIGO) consensus definition of AKI. EPIS-AKI is an international prospective, observational, multicentre cohort study including 10 000 patients undergoing major surgery who are subsequently admitted to the ICU or a similar high dependency unit. The primary endpoint is the incidence of AKI within 72 hours after surgery according to the KDIGO criteria. Secondary endpoints include use of renal replacement therapy (RRT), mortality during ICU and hospital stay, length of ICU and hospital stay and major adverse kidney events (combined endpoint consisting of persistent renal dysfunction, RRT and mortality) at day 90. Further, we will evaluate preoperative and intraoperative risk factors affecting the incidence of postoperative AKI. In an add-on analysis, we will assess urinary biomarkers for early detection of AKI. EPIS-AKI has been approved by the leading Ethics Committee of the Medical Council North Rhine-Westphalia, of the Westphalian Wilhelms-University Münster and the corresponding Ethics Committee at each participating site. Results will be disseminated widely and published in peer-reviewed journals, presented at conferences and used to design further AKI-related trials. Trial registration number NCT04165369

    Corrigendum: Diffusion tensor of water in partially aligned fibre networks (2013 J. Phys. D: Appl. Phys. 46 455401)

    Get PDF
    This is a corrigendum for the article 2013 J. Phys. D: Appl. Phys. 46 455401 ePrints 6390

    Gestational complications of the prothrombin G20210A mutation related to prothrombin activity

    No full text
    Aim: to study the association between prothrombin activity in the blood plasma and gestational complications in women with the prothrombin G20210A mutation.Materials and methods. A prospective clinical cohort study including 290 pregnant women aged 18 to 45 years was conducted from 2012 to 2018. Two cohorts were formed: a study group of 140 patients with the GA genotype and a control group of 150 women with the GG genotype. In the groups, the activity of prothrombin (Factor II) in the venous blood plasma was evaluated during pregnancy. The stages of cytotrophoblast invasion were taken into account when relating the prothrombin activity to gestational complications.Results. The median prothrombin activity in the control group ranged from 108 % during the preconception period to 144 % during pregnancy (95 % CI = 130–150). In the study group with the GA genotype, the activity was significantly higher at the same periods: from 149 to 181 % (95 % CI = 142–195; p < 0.0001). With the prothrombin activity from 148.5 to 180.6 %, the pregnancy in the study group progressed normally. Higher levels of prothrombin activity were associated with early and/or severe preeclampsia (PE), and fetal growth retardation (FGR).Conclusion. The obtained data on prothrombin activity in the blood plasma during pregnancy complications suggest that the manifestation of the GA genotype in the form of early and/or severe PE and FGR is associated with the level of plasma prothrombin activity. The threshold value of Factor II activity was calculated for patients with the G20210A mutation; based on this value it becomes possible to predict PE at the preconception stage (171.0 %; AUC – 0.86; p < 0.0001) and at a gestational age of 7–8 weeks (181.3 %; AUC – 0.84; p < 0.0001)

    Chapter 7: Quantification of articular cartilage microstructure by the analysis of the diffusion tensor

    No full text
    In this Chapter, we present approaches to numerical simulation of the diffusion of water molecules in fibre networks that serve as models of articular cartilage. The simulations are intended as a tool for the translation of experimental diffusion MRI data into quantitative microstructural and compositional characteristics of articular cartilage. The chapter begins with a brief introduction to diffusion NMR and diffusion imaging, focussing on diffusion tensor imaging. It discusses the current limitations of diffusion MRI in quantifying articular cartilage microstructure beyond the predominant direction of collagen fibre alignment. We then detail the construction of aligned and partially aligned networks of fibres that can serve as models of articular cartilage. We discuss the methods for the simulation of the diffusion of tracer molecules through the model networks (especially Langevin Dynamics and Monte Carlo techniques), and reconstruction of the diffusion tensor from the simulated molecular trajectories. The aim of these simulations is to quantitatively link the eigenvalues and the fractional anisotropy of cartilage diffusion tensor to collagen fibre volume fraction and the degree of collagen fibre alignment. The global aim of this work is to move diffusion tensor imaging of articular cartilage beyond determination of the predominant direction of fibre alignment, and towards quantification of the fibre orientation distribution

    Biomechanics of synthetic elastin : insights from Magnetic Resonance microimaging

    No full text
    We used Magnetic Resonance microimaging (μMRI) to study the compressive behaviour of synthetic elastin. Compression-induced changes in the elastin sample were quantified using longitudinal and transverse spin relaxation rates (R1 and R2, respectively). Spatially-resolved maps of each spin relaxation rate were obtained, allowing the heterogeneous texture of the sample to be observed with and without compression. Compression resulted in an increase of both the mean R1 and the mean R2, but most of this increase was due to sub-locations that exhibited relatively low R1 and R2 in the uncompressed state. This behaviour can be described by differential compression, where local domains in the hydrogel with a relatively low biopolymer content compress more than those with a relatively high biopolymer content
    corecore