45 research outputs found

    In it for the long haul: The Nashville sit-ins, pioneering non-violence training and national leadership

    Get PDF
    This thesis examines the Nashville Sit-Ins, which were the first to desegregate lunch counters in the south during the sit-in movement that occurred in the south in the early 1960s. Despite the outcome of the results of the sit-ins, it has been largely overlooked by scholars and historians on its importance not only to the Sit-In Movement, but Civil Rights Movement. The Nashville Sit-Ins were the first to desegregate lunch counters in the south two months before Greensboro Sit-ins desegregated their lunch counters. The main importance that came out of the Nashville Sit-Ins was the preparation and training that the student participants of the sit-ins received by the Nashville Christian Leadership Council non-violent workshops led by James Lawson and Reverend Kelly Miller Smith. Another important aspect of the Nashville Sit-Ins was the student involvement from Nashville, four historically black colleges and universities that included Fisk University, Tennessee State A&I, Meharry Medical College, and American Baptist Theological Seminary. Some of the students from those four universities included Diane Nash, Marion Berry, John Lewis, Bernard Lafayette, and James Bevel who would go on to be involved in the most important civil rights events during that time like the Freedom Riders and Selma-to-Montgomery Marches. The sources that will be used in the thesis include primary and secondary sources. These primary sources include archives, photographs, interviews, and letters while the secondary sources include books and journal articles. This thesis explore how the Nashville Christian Leadership Council pioneered non-violent workshops during the civil rights movement and how the Nashville Sit-Ins created civil rights leaders. (Author abstract)Momodu, S.D. (2019). In it for the long haul: The Nashville sit-ins, pioneering non-violence training and national leadership. Retrieved from http://academicarchive.snhu.eduMaster ArtsHistoryCollege of Online and Continuing Educatio

    Influence of Flow Field Design on Zinc Deposition and Performance in a Zinc-Iodide Flow Battery

    Get PDF
    Among the aqueous redox flow battery systems, redox chemistries using a zinc negative electrode have a relatively high energy density, but the potential of achieving high power density and long cycle life is hindered by dendrite growth at the anode. In this study, a new cell design with a narrow gap between electrode and membrane was applied in a zinc-iodide flow battery. In this design, some of the electrolyte flows over the electrode surface and a fraction of the flow passes through the porous felt electrode in the direction of current flow. The flow battery was tested under constant current density over 40 cycles, and the efficiency, discharge energy density, and power density of the battery were significantly improved compared to conventional flow field designs. The power density obtained in this study is one of the highest power densities reported for the zinc-iodide battery. The morphology of the zinc deposition was studied using scanning electron microscopy and optical profilometry. It was found that the flow through the electrode led to a thinner zinc deposit with lower roughness on the surface of the electrode, in comparison to the case where there was no flow through the electrode. In addition, inhibition of dendrite formation enabled operation at a higher range of current density. Ex situ tomographic measurements were used to image the zinc deposited on the surface and inside the porous felt. Volume rendering of graphite felt from X-ray computed tomography images showed that in the presence of flow through the electrode, more zinc deposition occurred inside the porous felt, resulting in a compact and thinner surface deposit, which may enable higher battery capacity and improved performance

    Ni–Zn hydroxide-based bi-phase multiscale porous nanohybrids : physico-chemical properties

    Get PDF
    Please read abstract in the article.The Algerian minister programhttps://link.springer.com/journal/132042020-05-25hj2020Physic

    Pyrolysed almond shells used as electrodes in microbial electrolysis cell

    Get PDF
    9 p.The large cost of components used in microbial electrolysis cell (MEC) reactors represents an important limitation that is delaying the commercial implementation of this technology. In this work, we explore the feasibility of using pyrolysed almond shells (PAS) as a material for producing low-cost anodes for use in MEC systems. This was done by comparing the microbial populations that developed on the surface of PAS bioanodes with those present on the carbon felt (CF) bioanodes traditionally used in MECs. Raw almond shells were pyrolysed at three different temperatures, obtaining the best conductive material at the highest temperature (1000 °C). The behaviour of this material was then verified using a single-chamber cell. Subsequently, the main test was carried out using two-chamber cells and the microbial populations extant on each of the bioanodes were analysed. High-throughput sequencing of the 16S rRNA gene for eubacterial populations was carried out in order to compare the microbial communities attached to each type of electrode. The microbial populations on each electrode were also quantified by real-time polymerase chain reaction (realtime PCR) to determine the amount of bacteria capable of growing on the electrodes’surface. The results indicated that the newly developed PAS bioanodes possess a biofilm similar to those found on the surface of traditional CF electrodes. This research was possible thanks to the financial support of the Junta de Castilla y León, and was financed by European Regional Development Funds (LE320P18). C. B. thanks the Spanish Ministerio de Educación, Cultura y Deporte for support in the form of an FPI fellowship grant (Ref #: BES-2016-078329)

    Evaluation of Drinking Water Quality and Bacterial Antibiotic Sensitivity in Wells and Standpipes at Household Water Points in Freetown, Sierra Leone

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2022-04-27, pub-electronic 2022-05-29Publication status: PublishedWater quality surveillance can help to reduce waterborne diseases. Despite better access to safe drinking water in Sierra Leone, about a third of the population (3 million people) drink water from unimproved sources. In this cross-sectional study, we collected water samples from 15 standpipes and 5 wells and measured the physicochemical and bacteriological water quality, and the antimicrobial sensitivity of Escherichia coli (E. coli) in two communities in Freetown, Sierra Leone in the dry and wet seasons in 2021. All water sources were contaminated with E. coli, and all five wells and 25% of standpipes had at least an intermediate risk level of E. coli. There was no antimicrobial resistance detected in the E. coli tested. The nitrate level exceeded the WHO’s recommended standard (>10 parts per million) in 60% of the wells and in less than 20% of the standpipes. The proportion of samples from standpipes with high levels of total dissolved solids (>10 Nephelometric Turbidity Units) was much higher in the rainy season (73% vs. 7%). The level of water contamination is concerning. We suggest options to reduce E. coli contamination. Further research is required to identify where contamination of the water in standpipes is occurring

    Energy Recovery Potential from Effluents in the Process Industry: System Dynamics Modeling and Techno-Economic Assessments

    No full text
    This study quantifies the effluents generated during processing in three industry types, estimates the energy potential from the quantified effluents in the form of biogas generation, and determines the economic viability of the biogas recovered. Data were procured from the relevant scientific publications to quantify the effluents generated from the production processes in the industry types examined, using industrial process calculations. The effluent data generated are used in the 2-module biogas energy recovery model to estimate the bioenergy recovery potential within it. Economic and financial analysis is based on a cash-flow comparison of all costs and benefits resulting from its activities. The effluents generated an average daily biogas of 2559 Nm3/gVS, having a daily potential combined heat and power of 0.52 GWh and 0.11 GWh, respectively. The life cycle analysis and cost-benefit analysis show the quantity of emissions avoided when using the effluents to generate heat and power for processes, along with the profitability of the approach. Conclusively, the study shows that the use of biomass effluents to generate biogas for Combined Heat and Power (CHP) is a viable one, based on the technologies of a reciprocating engine, gas turbine, microturbine, and fuel cell. However, it is recommended that the theoretical estimation be validated using a field-scale project

    Pullulan-ionic liquid-based supercapacitor: A novel, smart combination of components for an easy-to-dispose device

    No full text
    Strategies that simultaneously target energy/power performance, sustainable manufacturing processes, valorization of green raw materials, and easy recycling of supercapacitors are urgently needed. Today, efforts have to be devoted not only to improve system performance but also to address the sustainability of materials and devices manufacturing and recyclability. Specifically, pullulan is herein proposed as a novel bio-degradable binder and separator for green supercapacitors. It is processed by electrospinning from aqueous solutions, therefore overcoming issues related to conventional membrane processing by organic solvents. Furthermore, combining the water-soluble, biodegradable pullulan with a hydrophobic ionic liquid electrolyte brings about a novel approach for end-of-life management of devices. The use of pullulan is demonstrated in a supercapacitor with carbon electrodes obtained from pepper-seeds waste and 1-Ethyl-3-methylimidazoliumbis(trifluoromethylsulfonyl)imide as the electrolyte. The supercapacitor delivers up to 5 kW kg 121 specific power and 27.8 Wh kg 121 specific energy at 3.2 V, that well compare with conventional electrical double-layer capacitor performance with the added value of being eco-friendly and cheap

    Nanostructured porous carbons with high rate cycling and floating performance for supercapacitor application

    Get PDF
    Biomass-derived activated carbon from cork (Quercus Suber) (ACQS) was prepared via a two-step environment-friendly route using mild KHCO3 as the activating agent. This synthesis route makes the material produced less toxic for usage as electrode material for energy storage application. The ACQS has well-defined microporous and mesoporous structures and a specific surface area of 1056.52 m2 g-1 and pore volume of 0.64 cm3 g-1. Three-electrode tests were performed in 6 M KOH, 1 M H2SO4 and 3 M KNO3 aqueous electrolytes, to analyse the material performance in acidic, basic, and neutral media. Specific capacitance values (Cs) of 133 F g-1/167 F g-1 at 1.0 A g-1 was obtained in 3 M KNO3 in the positive/negative potential windows. Due to the observed best performance in neutral 3 M KNO3, further electrochemical analysis of the symmetric device was carried out using the same electrolyte. The device displayed a Cs value of 122 F g-1, energy and power densities of ∼14 W h kg-1 and 450 W kg-1 respectively; at 0.5 A g-1. The device also displayed an excellent stability after potentiostatic floating at a maximum voltage of 1.8 V for 120 h and ∼100% capacitance retention after 10,000 charge-discharge cycles. The excellent stability makes the cork-derived material a potential excellent, cost-effective material for supercapacitor application

    Nanostructured porous carbons with high rate cycling and floating performance for supercapacitor application

    No full text
    Biomass-derived activated carbon from cork (Quercus Suber) (ACQS) was prepared via a two-step environment-friendly route using mild KHCO3 as the activating agent. This synthesis route makes the material produced less toxic for usage as electrode material for energy storage application. The ACQS has well-defined microporous and mesoporous structures and a specific surface area of 1056.52 m2 g-1 and pore volume of 0.64 cm3 g-1. Three-electrode tests were performed in 6 M KOH, 1 M H2SO4 and 3 M KNO3 aqueous electrolytes, to analyse the material performance in acidic, basic, and neutral media. Specific capacitance values (Cs) of 133 F g-1/167 F g-1 at 1.0 A g-1 was obtained in 3 M KNO3 in the positive/negative potential windows. Due to the observed best performance in neutral 3 M KNO3, further electrochemical analysis of the symmetric device was carried out using the same electrolyte. The device displayed a Cs value of 122 F g-1, energy and power densities of ∼14 W h kg-1 and 450 W kg-1 respectively; at 0.5 A g-1. The device also displayed an excellent stability after potentiostatic floating at a maximum voltage of 1.8 V for 120 h and ∼100% capacitance retention after 10,000 charge-discharge cycles. The excellent stability makes the cork-derived material a potential excellent, cost-effective material for supercapacitor application

    Electrochemical measurements of 1D/2D/3DNi-Co bi-phase mesoporous nanohybrids synthesized using free-template hydrothermal method

    No full text
    Please read abstract in the article.The National Research Foundation (NRF) and the Directorate General for Scientific Research and Technological Development (DGRSDT).http://www.elsevier.com/locate/electacta2019-06-10hj2018Physic
    corecore