164 research outputs found

    A Transformational Approach to Gesture in Shō Performance

    Get PDF
    Through an analysis of contemporary shō performance practice, this article explores the relationship between instrumental gesture and modal theory in contemporary gagaku. I demonstrate that the idiosyncratic arrangement of the pipes on the shō is closely related to the pitch structure and tonal function of the aitake pitch clusters. My analysis synthesizes two approaches. First, I adopt David Lewin’s (1987) transformational attitude to conceptualize the aitake not as static musical objects but as processes of motion enacted by the te-utsuri—standardized fingering movements for shifting between two aitake. Second, I treat the aitake as sonic byproducts of a performer's instrumental gestures to examine how the aitake are related to one another kinesthetically, and whether these relationships correlate with the pitch structures of the aitake. I argue that relatedness between aitake is determined by the parsimony of te-utsuri. The most parsimonious movements can be enacted between four aitake: bō, kotsu, ichi and otsu. These aitake are identical to the clusters that accompany the fundamental tones of five of the six modes: Ichikotsu-chō, Hyōjō, Taishiki-chō, Oshiki-chō and Banshiki-chō. These findings demonstrate that the pipes of the shō, while seemingly arranged in no discernable order, prioritize parsimonious te-utsuri between each of the aitake accompanying the fundamental modal degrees. An analysis of the pitch structure of aitake through the lens of te-utsuri reveals a striking correlation between gestural parsimony and tonal function

    Ductile damage evolution law for proportional and non-proportional loading conditions

    Get PDF
    The characterization of ductile damage evolution, and its description, have been the object of extensive research in the continuum damage mechanic field. Many different models have been developed since the pioneering works carried out a few decades ago. In detail, the stress triaxiality and the Lode angle parameters have been identified as the two main variables that affect the material ductility. The literature offers a great number of investigations under monotonic loading conditions, however, a proper characterization of the damage evolution under cyclic loading or non-proportional loading is still missing. In this paper, an unconventional coupled elastoplastic and damage constitutive model with a Mohr-Coulomb failure criterion is presented. The novelty of this study is represented by the modification of the ductile damage law in order to consider the damage evolution under non-proportional loading conditions. Therefore, the idea is to investigate the structural response of a steel bridge column subjected to a cyclic non-proportional loading, showing how, a different approach in the description of the ductile damage evolution, is necessary for a realistic description of the pier behavior

    Ductile damage evolution law for proportional and non-proportional loading conditions

    Get PDF
    The characterization of ductile damage evolution, and its description, have been the object of extensive research in the continuum damage mechanic field. Many different models have been developed since the pioneering works carried out a few decades ago. In detail, the stress triaxiality and the Lode angle parameters have been identified as the two main variables that affect the material ductility. The literature offers a great number of investigations under monotonic loading conditions, however, a proper characterization of the damage evolution under cyclic loading or nonproportional loading is still missing. In this paper, an unconventional coupled elastoplastic and damage constitutive model with a Mohr-Coulomb failure criterion is presented. The novelty of this study is represented by the modification of the ductile damage law in order to consider the damage evolution under non-proportional loading conditions. Therefore, the idea is to investigate the structural response of a steel bridge column subjected to a cyclic non-proportional loading, showing how, a different approach in the description of the ductile damage evolution, is necessary for a realistic description of the pier behaviou

    Fatigue life assessment of a non-load carrying fillet joint considering the effects of a cyclic plasticity and weld bead shape

    Get PDF
    Fatigue life depends strongly on irreversible contributions that accumulate during cyclic loading and unloading of structures. However, the correct identification of the loading path in terms of uniaxial or multi-axial stress states, proportional or non-proportional loading is essential because these factors can significantly alter the material response. In this study, finite element analysis was conducted to assess the fatigue crack initiation life of a non-load carrying fillet joint by considering weld bead shape and a cyclic plasticity accumulation during fatigue loading, which is a main cause of crack initiation. Cyclic plasticity behaviour including cyclic hardening and softening together was investigated with an unconventional plasticity model called the subloading surface model and extended to include both elastic boundary and cyclic damage concepts. The cyclic plasticity model can capture realistic plastic strain accumulation during high cycle fatigue under macroscopically elastic stressing conditions. KEYWORDS. Unconventional plasticity; Fatigue; Loading path; Crack initiation
    corecore