43 research outputs found

    Overexpression of Human and Fly Frataxins in Drosophila Provokes Deleterious Effects at Biochemical, Physiological and Developmental Levels

    Get PDF
    10 pages, 5 figures. 21779322[PubMed] PMCID: PMC3136927BACKGROUND: Friedreich's ataxia (FA), the most frequent form of inherited ataxias in the Caucasian population, is caused by a reduced expression of frataxin, a highly conserved protein. Model organisms have contributed greatly in the efforts to decipher the function of frataxin; however, the precise function of this protein remains elusive. Overexpression studies are a useful approach to investigate the mechanistic actions of frataxin; however, the existing literature reports contradictory results. To further investigate the effect of frataxin overexpression, we analyzed the consequences of overexpressing human (FXN) and fly (FH) frataxins in Drosophila. METHODOLOGY/PRINCIPAL FINDINGS: We obtained transgenic flies that overexpressed human or fly frataxins in a general pattern and in different tissues using the UAS-GAL4 system. For both frataxins, we observed deleterious effects at the biochemical, histological and behavioral levels. Oxidative stress is a relevant factor in the frataxin overexpression phenotypes. Systemic frataxin overexpression reduces Drosophila viability and impairs the normal embryonic development of muscle and the peripheral nervous system. A reduction in the level of aconitase activity and a decrease in the level of NDUF3 were also observed in the transgenic flies that overexpressed frataxin. Frataxin overexpression in the nervous system reduces life span, impairs locomotor ability and causes brain degeneration. Frataxin aggregation and a misfolding of this protein have been shown not to be the mechanism that is responsible for the phenotypes that have been observed. Nevertheless, the expression of human frataxin rescues the aconitase activity in the fh knockdown mutant. CONCLUSION/SIGNIFICANCE: Our results provide in vivo evidence of a functional equivalence for human and fly frataxins and indicate that the control of frataxin expression is important for treatments that aim to increase frataxin levels.This work was supported by grants from Fondo Investigaciones Sanitarias (ISCIII06- PI0677) and La Fundació la Marató TV3 (exp 101932) of Spain. JVL is supported by the European Friedreich's Ataxia Consortium for Translational Studies. SS is a recipient of a fellowship from Ministerio de Ciencia e Innovación of Spain.Peer reviewe

    Localization of non-specific X-linked mental retardation gene (MRX73) to Xp22.2.

    No full text
    Clinical and molecular studies are reported on a family (MRX73) of five males with non-specific X-linked mental retardation (XLMR). A total of 33 microsatellite and RFLP markers was typed. The gene for this XLMR condition was been linked to DXS1195, with a lod score of 2.36 at theta = 0. The haplotype and multipoint linkage analyses suggest localization of the MRX73 locus to an interval of 2 cM defined by markers DXS8019 and DXS365, in Xp22.2. This interval contains the gene of Coffin-Lowry syndrome (RSK2), where a missense mutation has been associated with a form of non-specific mental retardation. Therefore, a search for RSK2 mutations was performed in the MRX73 family, but no causal mutation was found. We hypothesize that another unidentified XLMR gene is located near RSK2

    In vivo effects of romidepsin on T-cell activation, apoptosis and function in the BCN02 HIV-1 kick&kill clinical trial

    Get PDF
    Romidepsin (RMD) is a well-characterized histone deacetylase inhibitor approved for the treatment of cutaneous T-cell lymphoma. in vitro and in vivo studies have demonstrated that it is able to induce HIV-1 gene expression in latently infected CD4+ T cells from HIV-1+ individuals on suppressive antiretroviral therapy. However, in vitro experiments suggested that RMD could also impair T-cell functionality, particularly of activated T cells. Thus, the usefulness of RMD in HIV-1 kick&kill strategies, that aim to enhance the immune system elimination of infected cells after inducing HIV-1 viral reactivation, may be limited. In order to address whether the in vitro observations are replicated in vivo, we determined the effects of RMD on the total and HIV-1-specific T-cell populations in longitudinal samples from the BCN02 kick&kill clinical trial (NCT02616874). BCN02 was a proof-of-concept study in 15 early treated HIV-1+ individuals that combined MVA.HIVconsv vaccination with three weekly infusions of RMD given as a latency reversing agent. Our results show that RMD induced a transient increase in the frequency of apoptotic T cells and an enhanced activation of vaccine-induced T cells. Although RMD reduced the number of vaccine-elicited T cells secreting multiple cytokines, viral suppressive capacity of CD8+ T cells was preserved over the RMD treatment. These observations have important implications for the design of effective kick&kill strategies for the HIV-1 cure
    corecore