70 research outputs found
Polyatomic Molecules Formed with a Rydberg Atom in an Ultracold Environment
We investigate properties of ultralong-range polyatomic molecules formed with
a Rb Rydberg atom and several ground-state atoms whose distance from the
Rydberg atom is of the order of n^2a_0, where n is the principle quantum number
of the Rydberg electron. In particular, we put emphasis on the splitting of the
energy levels, and elucidate the nature of the splitting via the construction
of symmetry-adapted orbitals.Comment: 2 columns, 7 pages, 7 figures. Final verso
An {\it ab initio} relativistic coupled-cluster theory of dipole and quadrupole polarizabilities: Applications to a few alkali atoms and alkaline earth ions
We present a general approach within the relativistic coupled-cluster theory
framework to calculate exactly the first order wave functions due to any rank
perturbation operators. Using this method, we calculate the static dipole and
quadrupole polarizabilities in some alkali atoms and alkaline earth-metal ions.
This may be a good test of the present theory for different rank and parity
interaction operators. This shows a wide range of applications including
precise calculations of both parity and CP violating amplitudes due to rank
zero and rank one weak interaction Hamiltonians. We also give contributions
from correlation effects and discuss them in terms of lower order many-body
perturbation theory.Comment: Three tables and one figur
Optimizing the fast Rydberg quantum gate
The fast phase gate scheme, in which the qubits are atoms confined in sites
of an optical lattice, and gate operations are mediated by excitation of
Rydberg states, was proposed by Jaksch et al. Phys. Rev. Lett. 85, 2208 (2000).
A potential source of decoherence in this system derives from motional heating,
which occurs if the ground and Rydberg states of the atom move in different
optical lattice potentials. We propose to minimize this effect by choosing the
lattice photon frequency \omega so that the ground and Rydberg states have the
same frequency-dependent polarizability \alpha(omega). The results are
presented for the case of Rb.Comment: 5 pages, submitted to PR
Retarded long-range potentials for the alkali-metal atoms and a perfectly conducting wall
The retarded long-range potentials for hydrogen and alkali-metal atoms in
their ground states and a perfectly conducting wall are calculated. The
potentials are given over a wide range of atom-wall distances and the validity
of the approximations used is established.Comment: RevTeX, epsf, 11 pages, 2 fig
Population redistribution in optically trapped polar molecules
We investigate the rovibrational population redistribution of polar molecules
in the electronic ground state induced by spontaneous emission and blackbody
radiation. As a model system we use optically trapped LiCs molecules formed by
photoassociation in an ultracold two-species gas. The population dynamics of
vibrational and rotational states is modeled using an ab-initio electric dipole
moment function and experimental potential energy curves. Comparison with the
evolution of the v"=3 electronic ground state yields good qualitative
agreement. The analysis provides important input to assess applications of
ultracold LiCs molecules in quantum simulation and ultracold chemistry.Comment: 6 pages, 5 figures, EPJD Topical issue on Cold Quantum Matter -
Achievements and Prospect
Three-body non-additive forces between spin-polarized alkali atoms
Three-body non-additive forces in systems of three spin-polarized alkali
atoms (Li, Na, K, Rb and Cs) are investigated using high-level ab initio
calculations. The non-additive forces are found to be large, especially near
the equilateral equilibrium geometries. For Li, they increase the three-atom
potential well depth by a factor of 4 and reduce the equilibrium interatomic
distance by 0.9 A. The non-additive forces originate principally from chemical
bonding arising from sp mixing effects.Comment: 4 pages, 3 figures (in 5 files
Long-range interactions of metastable helium atoms
Polarizabilities, dispersion coefficients, and long-range atom-surface
interaction potentials are calculated for the n=2 triplet and singlet states of
helium using highly accurate, variationally determined, wave functions.Comment: RevTeX, epsf, 4 fig
Slowing and cooling molecules and neutral atoms by time-varying electric field gradients
A method of slowing, accelerating, cooling, and bunching molecules and
neutral atoms using time-varying electric field gradients is demonstrated with
cesium atoms in a fountain. The effects are measured and found to be in
agreement with calculation. Time-varying electric field gradient slowing and
cooling is applicable to atoms that have large dipole polarizabilities,
including atoms that are not amenable to laser slowing and cooling, to Rydberg
atoms, and to molecules, especially polar molecules with large electric dipole
moments. The possible applications of this method include slowing and cooling
thermal beams of atoms and molecules, launching cold atoms from a trap into a
fountain, and measuring atomic dipole polarizabilities.Comment: 13 pages, 10 figures. Scheduled for publication in Nov. 1 Phys. Rev.
High-precision determination of transition amplitudes of principal transitions in Cs from van der Waals coefficient C_6
A method for determination of atomic dipole matrix elements of principal
transitions from the value of dispersion coefficient C_6 of molecular
potentials correlating to two ground-state atoms is proposed. The method is
illustrated on atomic Cs using C_6 deduced from high-resolution Feshbach
spectroscopy. The following reduced matrix elements are determined < 6S_{1/2}
|| D || 6P_{1/2} > =4.5028(60) |e| a0 and
=6.3373(84) |e| a0 (a0= 0.529177 \times 10^{-8} cm.) These matrix elements are
consistent with the results of the most accurate direct lifetime measurements
and have a similar uncertainty. It is argued that the uncertainty can be
considerably reduced as the coefficient C_6 is constrained further.Comment: 4 pages; 3 fig
High-precision calculations of dispersion coefficients, static dipole polarizabilities, and atom-wall interaction constants for alkali-metal atoms
The van der Waals coefficients for the alkali-metal atoms from Na to Fr
interacting in their ground states, are calculated using relativistic ab initio
methods. The accuracy of the calculations is estimated by also evaluating
atomic static electric dipole polarizabilities and coefficients for the
interaction of the atoms with a perfectly conducting wall. The results are in
excellent agreement with the latest data from ultra-cold collisions and from
studies of magnetic field induced Feshbach resonances in Na and Rb. For Cs we
provide critically needed data for ultra-cold collision studies
- …
