26 research outputs found

    GARS- related disease in infantile spinal muscular atrophy: Implications for diagnosis and treatment

    Full text link
    The majority of patients with spinal muscular atrophy (SMA) identified to date harbor a biallelic exonic deletion of SMN1. However, there have been reports of SMA- like disorders that are independent of SMN1, including those due to pathogenic variants in the glycyl- tRNA synthetase gene (GARS1). We report three unrelated patients with de novo variants in GARS1 that are associated with infantile- onset SMA (iSMA). Patients were ascertained during inpatient hospital evaluations for complications of neuropathy. Evaluations were completed as indicated for clinical care and management and informed consent for publication was obtained. One newly identified, disease- associated GARS1 variant, identified in two out of three patients, was analyzed by functional studies in yeast complementation assays. Genomic analyses by exome and/or gene panel and SMN1 copy number analysis of three patients identified two previously undescribed de novo missense variants in GARS1 and excluded SMN1 as the causative gene. Functional studies in yeast revealed that one of the de novo GARS1 variants results in a loss- of- function effect, consistent with other pathogenic GARS1 alleles. In sum, the patients’ clinical presentation, assessments of previously identified GARS1 variants and functional assays in yeast suggest that the GARS1 variants described here cause iSMA. GARS1 variants have been previously associated with Charcot- Marie- Tooth disease (CMT2D) and distal SMA type V (dSMAV). Our findings expand the allelic heterogeneity of GARS- associated disease and support that severe early- onset SMA can be caused by variants in this gene. Distinguishing the SMA phenotype caused by SMN1 variants from that due to pathogenic variants in other genes such as GARS1 significantly alters approaches to treatment.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154914/1/ajmga61544_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154914/2/ajmga61544.pd

    Disruption of TRF2 association, but not open or closed chromatin, at rDNA in the presence of dnTRF2.

    No full text
    <p>Chromatin from control/uninduced T19 cells and 30 hour dnTRF2-expressing cells was crosslinked with 1% PFA, sonicated to 100–700 bp, and immunoprecipitated with indicated antibodies: (A) H3K4me2, (B) H3K9me3, (C) UBF, and (D) TRF2. Each bar shows relative enrichment as percentage of input by ChIP-PCR. Actin and alpha satellite are control regions. alpha sat  =  alpha satellite (centromere), β-sat  =  distal beta satellite (located telomeric of rDNA), u18S  =  upstream of 18S rDNA region, 18S = 18S rDNA region, IGS  =  intergenic spacer region in rDNA repeat. Error bars show standard error of the mean. (*) indicates significant difference (<i>p</i><0.001) between control and dnTRF2 ChIP enrichment.</p

    Condensin localization decreases on acrocentric short arms in the presence of dnTRF2.

    No full text
    <p>Combined immunostaining-FISH for (A) SMC4 (green) and rDNA (red) on metaphase chromosomes from control and 36 hour dnTRF2-expressing cells. (B) The amount of SMC4 was quantitated by measuring arbitrary fluorescence along the length of the chromosomes and plotting signal intensity as a line plot. A line begins at the p arm (0 on x-axis) and extends to the telomere of the q arm (∼150+ on x-axis). (C) The extent of rDNA and SMC4 co-localization at chromatids of metaphase chromosomes is presented in graphical format. The number of individuals chromatids examined is indicated at the top of each bar. A significant reduction in SMC4 co-localization at rDNA was observed on metaphase chromatids from cells expressing dnTRF2 for 36 hours. Scale bars in (A) are 15 micrometers.</p

    dnTRF2 expression correlates with rDNA repeat array dispersion.

    No full text
    <p>The rDNA arrays are located on the short arms of the 5 pairs of acrocentric chromosomes. FISH on RNase-treated nuclei hybridized with an rDNA (green) PAC probe showed that rDNA, normally appearing as multiple punctate foci in the nucleus, becomes more diffuse with increased dnTRF2 expression. The T19 (dnTRF2) cell line contains ∼18 acrocentric chromosomes. Multiple short arms normally converge in the nucleus, so each foci can contain more than rDNA regions from more than one acrocentric chromosome. With increased dnTRF2 expression and telomere dysfunction, the bright foci were reduced, instead appearing as dotted or beaded tracks of fluorescent signals stretching throughout the nucleus. Pseudo-colored and gray-scale single channel images for rDNA are shown below the merged images. Scale bars equal 5 micrometers.</p

    DNA damage markers appear with increased dnTRF2 expression.

    No full text
    <p>(A) Immunoblot for TRF2, β-actin (loading control), and H2AX-p on whole cell lysates from UV-treated (∼20 J/m<sup>2</sup>), uninduced/0-hour, 12-hour, 24-hour, 48-hour, and 72-hour dnTRF2-expressing cells. (B) Graphical representation of protein levels measured by arbitrary fluorescence units normalized to β-actin showing increased dnTRF2 protein levels with longer induction periods up to 48 hours. H2AX-p levels increased by 72 hours. (C) Immunoblot for Chk2-p and β-actin showing appearance of phosphorylated Chk2 kinase after 24 hours of dnTRF2 expression.</p

    Non-random acrocentric fusion when telomeres are disrupted by various approaches.

    No full text
    <p>(A) Immunoblot of HT1080 whole cell lysates selected for empty vector or shTRF2 retroviral vector for 11 or 15 days with puromycin. Blot shows TRF2 protein as a doublet and β-actin as a loading control. (B) Acrocentric fusions are non-randomly induced in HT1080 cells expressing a retroviral shTRF2 construct for 10 days and 3 weeks. In addition, treatment of cells with the double-strand break inducer zeocin also results in high numbers of acrocentric fusions. asterisk (*) in graph legend denotes observations from dnTRF2 expression previously reported in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0092432#pone.0092432-Stimpson1" target="_blank">[9]</a>.</p

    Timing of nucleolar protein disruption with increasing dnTRF2 expression.

    No full text
    <p>(A) Immunostaining of 3D-preserved whole nuclei with nucleolar protein fibrillarin (green) and Ki-67 (red) in control and 45 hour dnTRF2 nuclei show that nucleolar morphologies changes with increased dnTRF2 expression and telomere dysfunction. (B) Induced T19 (dnTRF2-expressing) cells were analyzed at intervals over a 24-hour period using immunofluorescence with antibodies specific to fibrillarin and FLAG (to detect FLAG-tagged dnTRF2 protein - red). Nucleolar changed from a normal spherical shape to less condensed structures resembling nucleolar necklaces. (C) Quantitation of the percent of nuclei showing visibly abnormal nucleolar staining over the timecourse. Abnormal morphology (decondensed, unraveled) of nucleoli (light grey) increased as dnTRF2 was expressed for longer periods. The number of nuclei examined at each timepoint is indicated at the top of each stacked bar. After dnTRF2 expression for 24 hours, there was a statistically significant increase (asterisk) in the proportion of abnormal nucleoli compared to control cells. Scale bars equal 5 micrometers, hr =  hour.</p
    corecore