91 research outputs found

    Poison Frog Colors Are Honest Signals Of Toxicity, Particularly For Bird Predators

    Get PDF
    Antipredator defenses and warning signals typically evolve in concert. However, the extensive variation across taxa in both these components of predator deterrence and the relationship between them are poorly understood. Here we test whether there is a predictive relationship between visual conspicuousness and toxicity levels across 10 populations of the color-polymorphic strawberry poison frog, Dendrobates pumilio. Using a mouse-based toxicity assay, we find extreme variation in toxicity between frog populations. This variation is significantly positively correlated with frog coloration brightness, a viewer-independent measure of visual conspicuousness (i.e., total reflectance flux). We also examine conspicuousness from the view of three potential predator taxa, as well as conspecific frogs, using taxon-specific visual detection models and three natural background substrates. We find very strong positive relationships between frog toxicity and conspicuousness for bird-specific perceptual models. Weaker but still positive correlations are found for crab and D. pumilio conspecific visual perception, while frog coloration as viewed by snakes is not related to toxicity. These results suggest that poison frog colors can be honest signals of prey unpalatability to predators and that birds in particular may exert selection on aposematic signal design.Integrative Biolog

    Adaptive mechanisms in the ecology of vision

    Get PDF

    Identifying context-specific gene profiles of social, reproductive and mate preference behavior in a fish species with female mate choice

    Get PDF
    Sensory and social inputs interact with underlying gene suites to coordinate social behavior. Here we use a naturally complex system in sexual selection studies, the swordtail, to explore how genes associated with mate preference, receptivity, and social affiliation interact in the female brain under specific social conditions. We focused on 11genes associated with mate preference in this species (neuroserpin, neuroligin-3, NMDA receptor, tPA, stathmin-2, β-1 adrenergic receptor) or with female sociosexual behaviors in other taxa (vasotocin, isotocin, brain aromatase,α-1 adrenergic receptor, tyrosinehydroxylase). We exposed females to four social conditions, including pairings of differing mate choice complexity (large males, large/ small males, small males), and a social lcontrol (two females). Female mate preference differed significantly by context. Multiple discriminant analysis (MDA) of behaviors revealed a primary axis (explaining 50.2% between-group variance) highlighting differences between groups eliciting high preference behaviors (LL,LS) vs. other contexts, and a secondary axis capturing general measures distinguishing a non-favored group (SS) from other groups. Gene expression MDA revealed a major axis (68.4% between-group variance) that distinguished amongst differential male pairings and was driven by suites of “preference and receptivity genes”; whereas a second axis, distinguishing high affiliation groups (large males, females) from low (small males), was characterized by traditional affiliative-associated genes (isotocin, vasotocin). We found context-specific correlations between behavior and gene MDA, suggesting gene suites covary with behaviors in a socially relevant context. Distinct associations between “affiliative” and “preference” axes suggest mate preference maybe mediated by distinct clusters from those of social affiliation. Our results highlight the need to incorporate natural complexity of mating systems into behavioral genomics

    Identifying Context-Specific Gene Profiles of Social, Reproductive, and Mate Preference Behavior in a Fish Species with Female Mate Choice

    Get PDF
    Sensory and social inputs interact with underlying gene suites to coordinate social behavior. Here we use a naturally complex system in sexual selection studies, the swordtail, to explore how genes associated with mate preference, receptivity, and social affiliation interact in the female brain under specific social conditions. We focused on 11 genes associated with mate preference in this species (neuroserpin, neuroligin-3, NMDA receptor, tPA, stathmin-2, β-1 adrenergic receptor) or with female sociosexual behaviors in other taxa (vasotocin, isotocin, brain aromatase, α-1 adrenergic receptor, tyrosine hydroxylase). We exposed females to four social conditions, including pairings of differing mate choice complexity (large males, large/small males, small males), and a social control (two females). Female mate preference differed significantly by context. Multiple discriminant analysis (MDA) of behaviors revealed a primary axis (explaining 50.2% between-group variance) highlighting differences between groups eliciting high preference behaviors (LL, LS) vs. other contexts, and a secondary axis capturing general measures distinguishing a non-favored group (SS) from other groups. Gene expression MDA revealed a major axis (68.4% between-group variance) that distinguished amongst differential male pairings and was driven by suites of “preference and receptivity genes”; whereas a second axis, distinguishing high affiliation groups (large males, females) from low (small males), was characterized by traditional affiliative-associated genes (isotocin, vasotocin). We found context-specific correlations between behavior and gene MDA, suggesting gene suites covary with behaviors in a socially relevant context. Distinct associations between “affiliative” and “preference” axes suggest mate preference may be mediated by distinct clusters from those of social affiliation. Our results highlight the need to incorporate natural complexity of mating systems into behavioral genomics

    25 years of sensory drive: the evidence and its watery bias

    Full text link
    It has been 25 years since the formalization of the Sensory Drive hypothesis was published in the American Naturalist (1992). Since then, there has been an explosion of research identifying its utility in contributing to our understanding of inter- and intra-specific variation in sensory systems and signaling properties. The main tenet of Sensory Drive is that environmental characteristics will influence the evolutionary trajectory of both sensory (detecting capabilities) and signaling (detectable features and behaviors) traits in predictable directions. We review the accumulating evidence in 154 studies addressing these questions and categorized their approach in terms of testing for environmental influence on sensory tuning, signal characteristics, or both. For the subset of studies that examined sensory tuning, there was greater support for Sensory Drive processes shaping visual than auditory tuning, and it was more prevalent in aquatic than terrestrial habitats. Terrestrial habitats and visual traits were the prevalent habitat and sensory modality in the 104 studies showing support for environmental influence on signaling properties. An additional 19 studies that found no supporting evidence for environmental influence on signaling traits were all based in terrestrial ecosystems and almost exclusively involved auditory signals. Only 29 studies examined the complete coevolutionary process between sensory and signaling traits and were dominated by fish visual communication. We discuss biophysical factors that may contribute to the visual and aquatic bias for Sensory Drive evidence, as well as biotic factors that may contribute to the lack of Sensory Drive processes in terrestrial acoustic signaling systems

    Sexual and social stimuli elicit rapid and contrasting genomic responses

    Get PDF
    Sensory physiology has been shown to influence female mate choice, yet little is known about the mechanisms within the brain that regulate this critical behaviour. Here we examine preference behaviour of 58 female swordtails, Xiphophorus nigrensis, in four different social environments (attractive and unattractive males, females only, non-attractive males only and asocial conditions) followed by neural gene expression profiling. We used a brain-specific cDNA microarray to identify patterns of genomic response and candidate genes, followed by quantitative PCR (qPCR) examination of gene expression with variation in behaviour. Our microarray results revealed patterns of genomic response differing more between classes of social stimuli than between presence versus absence of stimuli. We identified suites of genes showing diametrically opposed patterns of expression: genes that are turned ‘on’ while females interact with attractive males are turned ‘off’ when interacting with other females, and vice versa. Our qPCR results identified significant predictive relationships between five candidate genes and specific mate choice behaviours (preference and receptivity) across females exposed to males, with no significant patterns identified in female or asocial conditions or with overall locomotor activity. The identification of stimulus- and behaviour-specific responses opens an exciting window into the molecular pathways associated with social behaviour and mechanisms that underlie sexual selection

    When Do Stars Go BOOM?

    Get PDF
    The maximum mass of a star that can produce a white dwarf (WD) is an important astrophysical quantity. One of the best approaches to establishing this limit is to search for WDs in young star clusters in which only massive stars have had time to evolve and where the mass of the progenitor can be established from the cooling time of the WD together with the age of the cluster. Searches in young Milky Way clusters have not thus far yielded WD members more massive than about 1.1 M~M_{\odot}, well below the Chandrasekhar mass of 1.38 M1.38~M_{\odot}, nor progenitors with masses in excess of about 6 M6~M_{\odot}. However, the hunt for potentially massive WDs that escaped their cluster environs is yielding interesting candidates. To expand the cluster sample further, we used HST to survey four young and massive star clusters in the Magellanic Clouds for bright WDs that could have evolved from stars as massive as 10 M~M_{\odot}. We located five potential WD candidates in the oldest of the four clusters examined, the first extragalactic single WDs thus far discovered. As these hot WDs are very faint at optical wavelengths, final confirmation will likely have to await spectroscopy with 30-metre class telescopes.Comment: 10 pages, 5 figures, accepted to the Astrophysical Journal Letter

    Selection on Visual Opsin Genes in Diurnal Neotropical Frogs and Loss of the SWS2 Opsin in Poison Frogs

    Get PDF
    Amphibians are ideal for studying visual system evolution because their biphasic (aquatic and terrestrial) life history and ecological diversity expose them to a broad range of visual conditions. Here, we evaluate signatures of selection on visual opsin genes across Neotropical anurans and focus on three diurnal clades that are well-known for the concurrence of conspicuous colors and chemical defense (i.e., aposematism): poison frogs (Dendrobatidae), Harlequin toads (Bufonidae: Atelopus), and pumpkin toadlets (Brachycephalidae: Brachycephalus). We found evidence of positive selection on 44 amino acid sites in LWS, SWS1, SWS2, and RH1 opsin genes, of which one in LWS and two in RH1 have been previously identified as spectral tuning sites in other vertebrates. Given that anurans have mostly nocturnal habits, the patterns of selection revealed new sites that might be important in spectral tuning for frogs, potentially for adaptation to diurnal habits and for color-based intraspecific communication. Furthermore, we provide evidence that SWS2, normally expressed in rod cells in frogs and some salamanders, has likely been lost in the ancestor of Dendrobatidae, suggesting that under low-light levels, dendrobatids have inferior wavelength discrimination compared to other frogs. This loss might follow the origin of diurnal activity in dendrobatids and could have implications for their behavior. Our analyses show that assessments of opsin diversification in across taxa could expand our understanding of the role of sensory system evolution in ecological adaptation.</p
    corecore