1,672 research outputs found
Random acyclic networks
Directed acyclic graphs are a fundamental class of networks that includes
citation networks, food webs, and family trees, among others. Here we define a
random graph model for directed acyclic graphs and give solutions for a number
of the model's properties, including connection probabilities and component
sizes, as well as a fast algorithm for simulating the model on a computer. We
compare the predictions of the model to a real-world network of citations
between physics papers and find surprisingly good agreement, suggesting that
the structure of the real network may be quite well described by the random
graph.Comment: 4 pages, 2 figure
Properties of Random Graphs with Hidden Color
We investigate in some detail a recently suggested general class of ensembles
of sparse undirected random graphs based on a hidden stub-coloring, with or
without the restriction to nondegenerate graphs. The calculability of local and
global structural properties of graphs from the resulting ensembles is
demonstrated. Cluster size statistics are derived with generating function
techniques, yielding a well-defined percolation threshold. Explicit rules are
derived for the enumeration of small subgraphs. Duality and redundancy is
discussed, and subclasses corresponding to commonly studied models are
identified.Comment: 14 pages, LaTeX, no figure
Laplacian spectra of complex networks and random walks on them: Are scale-free architectures really important?
We study the Laplacian operator of an uncorrelated random network and, as an
application, consider hopping processes (diffusion, random walks, signal
propagation, etc.) on networks. We develop a strict approach to these problems.
We derive an exact closed set of integral equations, which provide the averages
of the Laplacian operator's resolvent. This enables us to describe the
propagation of a signal and random walks on the network. We show that the
determining parameter in this problem is the minimum degree of vertices
in the network and that the high-degree part of the degree distribution is not
that essential. The position of the lower edge of the Laplacian spectrum
appears to be the same as in the regular Bethe lattice with the
coordination number . Namely, if , and
if . In both these cases the density of eigenvalues
as , but the limiting behaviors near
are very different. In terms of a distance from a starting vertex,
the hopping propagator is a steady moving Gaussian, broadening with time. This
picture qualitatively coincides with that for a regular Bethe lattice. Our
analytical results include the spectral density near
and the long-time asymptotics of the autocorrelator and the
propagator.Comment: 25 pages, 4 figure
Solution of the 2-star model of a network
The p-star model or exponential random graph is among the oldest and
best-known of network models. Here we give an analytic solution for the
particular case of the 2-star model, which is one of the most fundamental of
exponential random graphs. We derive expressions for a number of quantities of
interest in the model and show that the degenerate region of the parameter
space observed in computer simulations is a spontaneously symmetry broken phase
separated from the normal phase of the model by a conventional continuous phase
transition.Comment: 5 pages, 3 figure
Spin Glass Phase Transition on Scale-Free Networks
We study the Ising spin glass model on scale-free networks generated by the
static model using the replica method. Based on the replica-symmetric solution,
we derive the phase diagram consisting of the paramagnetic (P), ferromagnetic
(F), and spin glass (SG) phases as well as the Almeida-Thouless line as
functions of the degree exponent , the mean degree , and the
fraction of ferromagnetic interactions . To reflect the inhomogeneity of
vertices, we modify the magnetization and the spin glass order parameter
with vertex-weights. The transition temperature () between the
P-F (P-SG) phases and the critical behaviors of the order parameters are found
analytically. When , and are infinite, and the
system is in the F phase or the mixed phase for , while it is in the
SG phase at . and decay as power-laws with increasing
temperature with different -dependent exponents. When ,
the and are finite and related to the percolation threshold. The
critical exponents associated with and depend on for () at the P-F (P-SG) boundary.Comment: Phys. Rev. E in pres
Effectiveness of a social support intervention on infant feeding practices : randomised controlled trial
Background: To assess whether monthly home visits from trained volunteers could improve infant feeding practices at age 12 months, a randomised controlled trial was carried out in two disadvantaged inner city London boroughs.
Methods: Women attending baby clinics with their infants (312) were randomised to receive monthly home visits from trained volunteers over a 9-month period (intervention group) or standard professional care only (control group). The primary outcome was vitamin C intakes from fruit. Secondary outcomes included selected macro and micro-nutrients, infant feeding habits, supine length and weight. Data were collected at baseline when infants were aged approximately 10 weeks, and subsequently when the child was 12 and 18 months old.
Results: Two-hundred and twelve women (68%) completed the trial. At both follow-up points no significant differences were found between the groups for vitamin C intakes from fruit or other nutrients. At first follow-up, however, infants in the intervention group were significantly less likely to be given goats’ or soya milks, and were more likely to have three solid meals per day. At the second follow-up, intervention group children were significantly less likely to be still using a bottle. At both follow-up points, intervention group children also consumed significantly more specific fruit and vegetables.
Conclusions: Home visits from trained volunteers had no significant effect on nutrient intakes but did promote some other recommended infant feeding practices
Random hypergraphs and their applications
In the last few years we have witnessed the emergence, primarily in on-line
communities, of new types of social networks that require for their
representation more complex graph structures than have been employed in the
past. One example is the folksonomy, a tripartite structure of users,
resources, and tags -- labels collaboratively applied by the users to the
resources in order to impart meaningful structure on an otherwise
undifferentiated database. Here we propose a mathematical model of such
tripartite structures which represents them as random hypergraphs. We show that
it is possible to calculate many properties of this model exactly in the limit
of large network size and we compare the results against observations of a real
folksonomy, that of the on-line photography web site Flickr. We show that in
some cases the model matches the properties of the observed network well, while
in others there are significant differences, which we find to be attributable
to the practice of multiple tagging, i.e., the application by a single user of
many tags to one resource, or one tag to many resources.Comment: 11 pages, 7 figure
Portraits of Complex Networks
We propose a method for characterizing large complex networks by introducing
a new matrix structure, unique for a given network, which encodes structural
information; provides useful visualization, even for very large networks; and
allows for rigorous statistical comparison between networks. Dynamic processes
such as percolation can be visualized using animations. Applications to graph
theory are discussed, as are generalizations to weighted networks, real-world
network similarity testing, and applicability to the graph isomorphism problem.Comment: 6 pages, 9 figure
Clustering Phase Transitions and Hysteresis: Pitfalls in Constructing Network Ensembles
Ensembles of networks are used as null models in many applications. However,
simple null models often show much less clustering than their real-world
counterparts. In this paper, we study a model where clustering is enhanced by
means of a fugacity term as in the Strauss (or "triangle") model, but where the
degree sequence is strictly preserved -- thus maintaining the quenched
heterogeneity of nodes found in the original degree sequence. Similar models
had been proposed previously in [R. Milo et al., Science 298, 824 (2002)]. We
find that our model exhibits phase transitions as the fugacity is changed. For
regular graphs (identical degrees for all nodes) with degree k > 2 we find a
single first order transition. For all non-regular networks that we studied
(including Erdos - Renyi and scale-free networks) we find multiple jumps
resembling first order transitions, together with strong hysteresis. The latter
transitions are driven by the sudden emergence of "cluster cores": groups of
highly interconnected nodes with higher than average degrees. To study these
cluster cores visually, we introduce q-clique adjacency plots. We find that
these cluster cores constitute distinct communities which emerge spontaneously
from the triangle generating process. Finally, we point out that cluster cores
produce pitfalls when using the present (and similar) models as null models for
strongly clustered networks, due to the very strong hysteresis which
effectively leads to broken ergodicity on realistic time scales.Comment: 13 pages, 11 figure
Giant strongly connected component of directed networks
We describe how to calculate the sizes of all giant connected components of a
directed graph, including the {\em strongly} connected one. Just to the class
of directed networks, in particular, belongs the World Wide Web. The results
are obtained for graphs with statistically uncorrelated vertices and an
arbitrary joint in,out-degree distribution . We show that if
does not factorize, the relative size of the giant strongly
connected component deviates from the product of the relative sizes of the
giant in- and out-components. The calculations of the relative sizes of all the
giant components are demonstrated using the simplest examples. We explain that
the giant strongly connected component may be less resilient to random damage
than the giant weakly connected one.Comment: 4 pages revtex, 4 figure
- …