25 research outputs found

    Cholesterol-dependent activity of dapsone against non-replicating persistent mycobacteria

    Get PDF
    One-third of the world’s population is estimated to be latently infected with Mycobacterium tuberculosis . This reservoir of bacteria is largely resistant to antimicrobial treatment that often only targets actively replicating mycobacteria, with current treatment for latent infection revolving around inhibiting the resuscitation event rather than preventing or treating latent infection. As a result, antimicrobials that target latent infection often have little to no activity in vivo. Here we report a method of in vitro analysis of physiologically relevant non-replicating persistence (NRP) utilizing cholesterol as the sole carbon source, alongside hypoxia as a driver of Mycobacterium bovis BCG into the NRP state. Using the minimal cholesterol media NRP assay, we observed an increased state of in vitro resistance to front-line anti-tubercular compounds. However, following a phenotypic screen of an approved-drug library, we identified dapsone as a bactericidal active molecule against cholesterol-dependent NRP M. bovis BCG. Through an overexpression trial of probable antimicrobial target enzymes, we further identified FolP2, a non-functional dihydropteroate synthase homologue, as the likely target of dapsone under cholesterol-NRP due to a significant increase in bacterial resistance when overexpressed. These results highlight the possible reason for little in vivo activity seen for current front-line anti-NRP drugs, and we introduce a new methodology for future drug screening as well as a potential role for dapsone inclusion within the current treatment regime

    Microfluidics as a Novel Technique for Tuberculosis: From Diagnostics to Drug Discovery

    Get PDF
    Tuberculosis (TB) remains a global healthcare crisis, with an estimated 5.8 million new cases and 1.5 million deaths in 2020. TB is caused by infection with the major human pathogen Mycobacterium tuberculosis, which is difficult to rapidly diagnose and treat. There is an urgent need for new methods of diagnosis, sufficient in vitro models that capably mimic all physiological conditions of the infection, and high-throughput drug screening platforms. Microfluidic-based techniques provide single-cell analysis which reduces experimental time and the cost of reagents, and have been extremely useful for gaining insight into monitoring microorganisms. This review outlines the field of microfluidics and discusses the use of this novel technique so far in M. tuberculosis diagnostics, research methods, and drug discovery platforms. The practices of microfluidics have promising future applications for diagnosing and treating TB

    The Synaptic Gene Study:Design and Methodology to Identify Neurocognitive Markers in Phelan-McDermid Syndrome and <i>NRXN1</i> Deletions

    Get PDF
    Synaptic gene conditions, i.e., “synaptopathies,” involve disruption to genes expressed at the synapse and account for between 0.5 and 2% of autism cases. They provide a unique entry point to understanding the molecular and biological mechanisms underpinning autism-related phenotypes. Phelan-McDermid Syndrome (PMS, also known as 22q13 deletion syndrome) and NRXN1 deletions (NRXN1ds) are two synaptopathies associated with autism and related neurodevelopmental disorders (NDDs). PMS often incorporates disruption to the SHANK3 gene, implicated in excitatory postsynaptic scaffolding, whereas the NRXN1 gene encodes neurexin-1, a presynaptic cell adhesion protein; both are implicated in trans-synaptic signaling in the brain. Around 70% of individuals with PMS and 43–70% of those with NRXN1ds receive a diagnosis of autism, suggesting that alterations in synaptic development may play a crucial role in explaining the aetiology of autism. However, a substantial amount of heterogeneity exists between conditions. Most individuals with PMS have moderate to profound intellectual disability (ID), while those with NRXN1ds have no ID to severe ID. Speech abnormalities are common to both, although appear more severe in PMS. Very little is currently known about the neurocognitive underpinnings of phenotypic presentations in PMS and NRXN1ds. The Synaptic Gene (SynaG) study adopts a gene-first approach and comprehensively assesses these two syndromic forms of autism. The study compliments preclinical efforts within AIMS-2-TRIALS focused on SHANK3 and NRXN1. The aims of the study are to (1) establish the frequency of autism diagnosis and features in individuals with PMS and NRXN1ds, (2) to compare the clinical profile of PMS, NRXN1ds, and individuals with ‘idiopathic’ autism (iASD), (3) to identify mechanistic biomarkers that may account for autistic features and/or heterogeneity in clinical profiles, and (4) investigate the impact of second or multiple genetic hits on heterogeneity in clinical profiles. In the current paper we describe our methodology for phenotyping the sample and our planned comparisons, with information on the necessary adaptations made during the global COVID-19 pandemic. We also describe the demographics of the data collected thus far, including 25 PMS, 36 NRXN1ds, 33 iASD, and 52 NTD participants, and present an interim analysis of autistic features and adaptive functioning

    Challenges to the development of the next generation of self-reporting cardiovascular implantable medical devices

    No full text
    Cardiovascular disease (CVD) is a group of heart and vasculature conditions which are the leading form of mortality worldwide. Blood vessels can become narrowed, restricting blood flow, and drive the majority of hearts attacks and strokes. Surgical interventions are frequently required; including percutaneous coronary intervention (PCI) and coronary artery bypass grafting (CABG). Despite successful opening of vessels and restoration of blood flow, often in-stent restenosis (ISR) and graft failure can still occur, resulting in subsequent patient morbidity and mortality. A new generation of cardiovascular implants that have sensors and real-time monitoring capabilities are being developed to combat ISR and graft failure. Self-reporting stent/graft technology could enable precision medicine-based healthcare by detecting the earliest features of disease, even before symptoms occur. Bringing an implantable medical device with wireless electronic sensing capabilities to market is complex and often obstructive undertaking. This critical review analyses the obstacles that need to be overcome for self-reporting stents/grafts to be developed and provide a precision-medicine based healthcare for cardiovascular patients. Here we assess the latest research and technological advancement in the field, the current devices and the market potential for their end-user implementation

    Analysis of shared common genetic risk between amyotrophic lateral sclerosis and epilepsy

    Get PDF
    Because hyper-excitability has been shown to be a shared pathophysiological mechanism, we used the latest and largest genome-wide studies in amyotrophic lateral sclerosis (n = 36,052) and epilepsy (n = 38,349) to determine genetic overlap between these conditions. First, we showed no significant genetic correlation, also when binned on minor allele frequency. Second, we confirmed the absence of polygenic overlap using genomic risk score analysis. Finally, we did not identify pleiotropic variants in meta-analyses of the 2 diseases. Our findings indicate that amyotrophic lateral sclerosis and epilepsy do not share common genetic risk, showing that hyper-excitability in both disorders has distinct origins

    Plasma folate, related genetic variants, and colorectal cancer risk in EPIC

    No full text
    Background: A potential dual role of folate in colorectal cancer (CRC) is currently subject to debate. We investigate the associations between plasma folate, several relevant folate-related polymorphisms, and CRC risk within the large European Prospective Investigation into Cancer and Nutrition cohort. Methods: In this nested case-control study, 1,367 incident CRC cases were matched to 2,325 controls for study center, age, and sex. Risk ratios (RR) were estimated with conditional logistic regression and adjusted for smoking, education, physical activity, and intake of alcohol and fiber. Results: Overall analyses did not reveal associations of plasma folate with CRC. The RR (95% confidence interval; P-trend) for the fifth versus the first quintile of folate status was 0.94 (0.74-1.20; 0.44). The polymorphisms MTHFR677C -> T, MTHFR1298A -> C, MTR2756A -> G, MTRR66A -> G, and MTHFD11958G -> A were not associated with CRC risk. However, in individuals with the lowest plasma folate concentrations, the MTHFR 677TT genotype showed a statistically nonsignificant increased CRC risk [RR (95% CI; P-trend) TT versus CC = 1.39 (0.87-2.21); 0.12], whereas those with the highest folate concentrations showed a nonsignificant decreased CRC risk [RR TT versus CC = 0.74 (0.39-1.37); 0.34]. The SLC19A180G -> A showed a positive association with CRC risk [RR AA versus GG 1.30 (1.06-1.59); <0.01]. Conclusions: This large European prospective multicenter study did not show an association of CRC risk with plasma folate status nor with MTHFR polymorphisms. Impact: Findings of the present study tend to weaken the evidence that folate plays an important role in CRC carcinogenesis. However, larger sample sizes are needed to adequately address potential gene-environment interactions. Cancer Epidemiol Biomarkers Prev; 19(5); 1328-40. (C)2010 AACR

    A U-shaped relationship between plasma folate and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition

    No full text
    Folate intake has shown an inverse association with pancreatic cancer; nevertheless, results from plasma measurements were inconsistent. The aim of this study is to examine the association between plasma total homocysteine, methionine, folate, cobalamin, pyridoxal 5'-phosphate, riboflavin, flavin mononucleotide and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). We conducted a nested case-control study in the EPIC cohort, which has an average of 9.6 years of follow-up (1992-2006), using 463 incident pancreatic cancer cases. Controls were matched to each case by center, sex, age (± 1 year), date (± 1 year) and time (± 3 h) at blood collection and fasting status. Conditional logistic regression was used to calculate the odds ratios (OR) and 95% confidence intervals (CI), adjusting for education, smoking status, plasma cotinine concentration, alcohol drinking, body mass index and diabetes status. We observed a U-shaped association between plasma folate and pancreatic cancer risk. The ORs for plasma folate ≤ 5, 5-10, 10-15 (reference), 15-20, and &gt; 20 nmol/L were 1.58 (95% CI=0.72-3.46), 1.39 (0.93-2.08), 1.0 (reference), 0.79 (0.52-1.21), and 1.34 (0.89-2.02), respectively. Methionine was associated with an increased risk in men (per quintile increment: OR=1.17, 95% CI=1.00-1.38) but not in women (OR=0.91, 95% CI=0.78-1.07; p for heterogeneity &lt;0.01). Our results suggest a U-shaped association between plasma folate and pancreatic cancer risk in both men and women. The positive association that we observed between methionine and pancreatic cancer may be sex dependent and may differ by time of follow-up. However, the mechanisms behind the observed associations warrant further investigation
    corecore