7,699 research outputs found

    The Transverse Proximity Effect: A Probe to the Environment, Anisotropy, and Megayear Variability of QSOs

    Full text link
    The transverse proximity effect is the expected decrease in the strength of the Lya forest absorption in a QSO spectrum when another QSO lying close to the line of sight enhances the photoionization rate above that due to the average cosmic ionizing background. We select three QSOs from the Early Data Release of the Sloan Digital Sky Survey that have nearby foreground QSOs, with proper line of sight tangential separations of 0.50, 0.82, and 1.10 h^{-1} Mpc. We estimate that the ionizing flux from the foreground QSO should increase the photoionization rate by a factor (94, 13, 13) in these three cases, which would be clearly detectable in the first QSO and marginally so in the other two. We do not detect the transverse proximity effect. Three possible explanations are provided: an increase of the gas density in the vicinity of QSOs, time variability, and anisotropy of the QSO emission. We find that the increase of gas density near QSOs can be important if they are located in the most massive halos present at high redshift, but is not enough to fully explain the absence of the transverse proximity effect. Anisotropy requires an unrealistically small opening angle of the QSO emission. Variability demands that the luminosity of the QSO with the largest predicted effect was much lower 10^6 years ago, whereas the transverse proximity effect observed in the HeII Lya absorption in QSO 0302-003 by Jakobsen et al. (2003) implies a lifetime longer than 10^7 years. A combination of all three effects may better explain the lack of Lya absorption reduction. A larger sample of QSO pairs may be used to diagnose the environment, anisotropy and lifetime distribution of QSOs.Comment: 27 pages, 13 figures, accepted by Ap

    Communications Biophysics

    Get PDF
    Contains reports on two research projects.National Science Foundation (Grant G-16526)National Institutes of Health (Grant MH-04737-03)National Aeronautics and Space Administration (Grant NsG-496

    Comment on "Giant absorption cross section of ultracold neutrons in Gadolinium"

    Full text link
    Rauch et al (PRL 83, 4955, 1999) have compared their measurements of the Gd cross section for Ultra-cold neutrons with an exptrapolation of the cross section for thermal neutrons and interpreted the discrepancy in terms of coherence properties of the neutron. We show the extrapolation used is based on a misunderstanding and that coherence properties play no role in absorption.Comment: 2 pages, 1 postscript figure, comment on Rauch et al, PRL 83,4955 (1999

    The metal absorption systems of the Hubble Deep Field South QSO

    Get PDF
    The Hubble Deep Field South (HDFS) has been recently selected and the observations are planned for October 1998. We present a high resolution (FWHM 14\simeq 14 \kms) spectrum of the quasar J2233--606 (zem2.22z_{em}\simeq2.22) which is located 5.1 arcmin East of the HDFS. The spectrum obtained with the New Technology Telescope redward of the Lyman--α\alpha emission line covers the spectral range 4386--8270 \AA. This range corresponds to redshift intervals for CIV and MgII intervening systems of z=1.832.25z=1.83-2.25 and z=0.571.95z=0.57-1.95 respectively. The data reveal the presence of two complex intervening CIV systems at redshift z=1.869z=1.869 and z=1.943z=1.943 and two complex associated (zabszemz_{abs} \approx z_{em}) systems. Other two CIV systems at z=1.7865z=1.7865 and z=2.077z=2.077, suggested by the presence of strong Lyman--α\alpha lines in low resolution ground based and Hubble Space Telescope (HST) STIS observations (Sealey et al. 1998) have been identified. The system at z=1.943z=1.943 is also responsible for the Lyman limit absorption seen in the HST/STIS spectrum. The main goal of the present work is to provide astronomers interested in the Hubble Deep Field South program with information related to absorbing structures at high redshift, which are distributed along the nearby QSO line of sight. For this purpose, the reduced spectrum, obtained from three hours of integration time, has been released to the astronomical community.Comment: revisited version accepted for publication by Astronomical Journal; minor changes; typographical errors corrected; results and discussion unchange

    The Properties of Field Elliptical Galaxies at Intermediate Redshift. I: Empirical Scaling Laws

    Get PDF
    We present measurements of the Fundamental Plane (FP) parameters (the effective radius, the mean effective surface brightness, and the central velocity dispersion) of six field elliptical galaxies at intermediate redshift. The imaging is taken from the Medium Deep Survey of the Hubble Space Telescope, while the kinematical data are obtained from long-slit spectroscopy using the 3.6-m ESO telescope. The Fundamental Plane appears well defined in the field even at redshift \approx 0.3. The data show a shift in the FP zero point with respect to the local relation, possibly indicating modest evolution, consistent with the result found for intermediate redshift cluster samples. The FP slopes derived for our field data, plus other cluster ellipticals at intermediate redshift taken from the literature, differ from the local ones, but are still consistent with the interpretation of the FP as a result of homology, of the virial theorem and of the existence of a relation between luminosity and mass, LMηL \propto M^{\eta}. We also derive the surface brightness vs. effective radius relation for nine galaxies with redshift up to z0.6z \approx0.6, and data from the literature; the evolution that can be inferred is consistent with what is found using the FP.Comment: 17 pages, including 9 figures, MNRAS, accepte

    On Teaching Discrete Mathematics to Freshman Computer Science Students

    Get PDF
    Discrete Mathematics is an inevitable part of any undergraduate computer science degree programme. However, today's computer science student typically finds this to be at best a necessary evil with which they struggle to engage. Twenty years ago, we started to address this issue seriously in our university, and we have instituted a number of innovations throughout the years which have had a positive effect on engagement and, thus, attainment. In this paper, we describe and motivate the innovations which we introduced, and provide a detailed analysis of how and why engagement and attainment levels varied over two decades as a direct result of these innovation

    The Serendipitous Discovery of a Group or Cluster of young Galaxies at z=2.40 in Deep Hubble Space Telescope WFPC2 Images

    Full text link
    We report the serendipitous discovery of a group or cluster of young galaxies at zz\simeq2.40 in a 24-orbit HST/WFPC2 exposure of the field around the weak radio galaxy 53W002. Potential cluster members were identified on ground-based narrow-band redshifted Lyα\alpha images and confirmed via spectroscopy. In addition to the known weak radio galaxy 53W002 at z=2.390, two other objects were found to have excess narrow-band Lyα\alpha emission at zz\simeq2.40. Both have been spectroscopically confirmed, and one clearly contains a weak AGN. They are located within one arcminute of 53W002, or 0.23h1001\sim0.23h_{100}^{-1}Mpc (qoq_o=0.5) at zz\simeq2.40, which is the physical scale of a group or small cluster of galaxies. Profile fitting of the WFPC2 images shows that the objects are very compact, with scale lengths \simeq0\farcs 1 (0.39h1001\simeq0.39h_{100}^{-1}kpc), and are rather faint (luminosities < L*), implying that they may be sub-galactic sized objects. We discuss these results in the context of galaxy and cluster evolution and the role that weak AGN may play in the formation of young galaxies.Comment: Accepted for publication in The Astrophysical Journal (Letters). 13 pages of gzip compressed and uuencoded PS. Figures are available at http://www.phys.unsw.edu.au/~spd/bib.htm

    Mathisson's helical motions for a spinning particle --- are they unphysical?

    Get PDF
    It has been asserted in the literature that Mathisson's helical motions are unphysical, with the argument that their radius can be arbitrarily large. We revisit Mathisson's helical motions of a free spinning particle, and observe that such statement is unfounded. Their radius is finite and confined to the disk of centroids. We argue that the helical motions are perfectly valid and physically equivalent descriptions of the motion of a spinning body, the difference between them being the choice of the representative point of the particle, thus a gauge choice. We discuss the kinematical explanation of these motions, and we dynamically interpret them through the concept of hidden momentum. We also show that, contrary to previous claims, the frequency of the helical motions coincides, even in the relativistic limit, with the zitterbewegung frequency of the Dirac equation for the electron

    Fullerenelike arrangements in carbon nitride thin films grown by direct ion beam sputtering

    Get PDF
    Carbon nitride (CNx) thin films were grown by direct N-2/Ar ion beam sputtering of a graphite target at moderate substrate temperatures (300-750 K). The resulting microstructure of the films was studied by high-resolution transmission electron microscopy. The images showed the presence of curved basal planes in fullerenelike arrangements. The achievement and evolution of these microstructural features are discussed in terms of nitrogen incorporation, film-forming flux, and ion bombardment effects, thus adding to the understanding of the formation mechanisms of curved graphitic structures in CNx materials. (C) 2005 American Institute of Physics
    corecore