267 research outputs found

    VLT identification of the optical afterglow of the gamma-ray burst GRB 000131 at z=4.50

    Get PDF
    We report the discovery of the gamma-ray burst GRB 000131 and its optical afterglow. The optical identification was made with the VLT 84 hours after the burst following a BATSE detection and an Inter Planetary Network localization. GRB 000131 was a bright, long-duration GRB, with an apparent precursor signal 62 s prior to trigger. The afterglow was detected in ESO VLT, NTT, and DK1.54m follow-up observations. Broad-band and spectroscopic observations of the spectral energy distribution reveals a sharp break at optical wavelengths which is interpreted as a Ly-alpha absorption edge at 6700 A. This places GRB 000131 at a redshift of 4.500 +/- 0.015. The inferred isotropic energy release in gamma rays alone was approximately 10^54 erg (depending on the assumed cosmology). The rapid power-law decay of the afterglow (index alpha=2.25, similar to bursts with a prior break in the lightcurve), however, indicates collimated outflow, which relaxes the energy requirements by a factor of < 200. The afterglow of GRB 000131 is the first to be identified with an 8-m class telescope.Comment: 8 pages, 7 figures, accepted to A&A Letter

    Multi-Wavelength Studies of the Optically Dark Gamma-Ray Burst 001025A

    Full text link
    We identify the fading X-ray afterglow of GRB 001025A from XMM-Newton observations obtained 1.9-2.3 days, 2 years, and 2.5 years after the burst. The non-detection of an optical counterpart to an upper limit of R=25.5, 1.20 days after the burst, makes GRB 001025A a ``dark'' burst. Based on the X-ray afterglow spectral properties of GRB 001025A, we argue that some bursts appear optically dark because their afterglow is faint and their cooling frequency is close to the X-ray band. This interpretation is applicable to several of the few other dark bursts where the X-ray spectral index has been measured. The X-ray afterglow flux of GRB 001025A is an order of magnitude lower than for typical long-duration gamma-ray bursts. The spectrum of the X-ray afterglow can be fitted with an absorbed synchrotron emission model, an absorbed thermal plasma model, or a combination thereof. For the latter, an extrapolation to optical wavelengths can be reconciled with the R-band upper limit on the afterglow, without invoking any optical circumburst absorption, provided the cooling frequency is close to the X-ray band. Alternatively, if the X-ray afterglow is due to synchrotron emission only, seven magnitudes of extinction in the observed R-band is required to meet the R-band upper limit, making GRB 001025A much more obscured than bursts with detected optical afterglows. Based on the column density of X-ray absorbing circumburst matter, an SMC gas-to-dust ratio is insufficient to produce this amount of extinction. The X-ray tail of the prompt emission enters a steep temporal decay excluding that the tail of the prompt emission is the onset of the afterglow (abridged).Comment: 32 pages, 8 figures, ApJ in pres

    The bright Gamma-Ray Burst of February 10, 2000: a case study of an optically dark GRB

    Get PDF
    The gamma-ray burst GRB000210 had the highest gamma-ray peak flux of any event localized by BeppoSAX as yet but it did not have a detected optical afterglow. It is therefore one of the events recently classified as dark GRBs or GHOST (GRB Hiding Optical Source Transient), whose origin is still unclear. Chandra observations allowed us to localize this GRB within ~1" and a radio transient was detected with the VLA. We identify the likely (P=0.01) host galaxy of this burst at z=0.846. The X-ray spectrum of the afterglow shows intrinsic absorption N_H=5x10**21 cm-2. The amount of dust needed to absorb the optical flux of this object is consistent with the above HI column density, given a dust-to-gas ratio similar to that of our Galaxy. We do not find evidence for a partially ionized absorber expected if the absorption takes place in a Giant Molecular Cloud. We therefore conclude that either the gas is local to the GRB, but is condensed in small-scale high-density (n>~10**9 cm-3) clouds, or that the GRB is located in a dusty, gas-rich region of the galaxy. Finally, if GRB000210 lies at z>5, its X-ray absorbing medium would have to be substantially different from that observed in GRBs with optical afterglows.Comment: 29 pages, 7 fig.s, some revisions, ApJ, in pres

    Very high column density and small reddening towards GRB 020124 at z = 3.20

    Get PDF
    We present optical and near-infrared observations of the dim afterglow of GRB 020124, obtained between 2 and 68 hours after the gamma-ray burst. The burst occurred in a very faint (R > 29.5) Damped Ly-alpha Absorber (DLA) at a redshift of z = 3.198 +- 0.004. The derived column density of neutral hydrogen is log(N_H) = 21.7 +- 0.2 and the rest-frame reddening is constrained to be E(B-V) < 0.065, i.e., A_V < 0.20 for standard extinction laws with R_V ~ 3. The resulting dust-to-gas ratio is less than 11 % of that found in the Milky Way, but consistent with the SMC and high-redshift QSO DLAs, indicating a low metallicity and/or a low dust-to-metals ratio in the burst environment. A grey extinction law (large R_V), produced through preferential destruction of small dust grains by the GRB, could increase the derived A_V and dust-to-gas ratio. The dimness of the afterglow is however fully accounted for by the high redshift: If GRB 020124 had been at z = 1 it would have been approximately 1.8 mag brighter--in the range of typical bright afterglows.Comment: 23 pages, 6 figures, ApJ, in pres

    Detection of the optical afterglow of GRB 000630: Implications for dark bursts

    Get PDF
    We present the discovery of the optical transient of the long-duration gamma-ray burst GRB000630. The optical transient was detected with the Nordic Optical Telescope 21.1 hours after the burst. At the time of discovery the magnitude of the transient was R = 23.04+-0.08. The transient displayed a power-law decline characterized by a decay slope of alpha = -1.035+-0.097. A deep image obtained 25 days after the burst shows no indication of a contribution from a supernova or a host galaxy at the position of the transient. The closest detected galaxy is a R=24.68+-0.15 galaxy 2.0 arcsec north of the transient. The magnitudes of the optical afterglows of GRB980329, GRB980613 and GRB000630 were all R>=23 less than 24 hours from the burst epoch. We discuss the implications of this for our understanding of GRBs without detected optical transients. We conclude that i) based on the gamma-ray properties of the current sample we cannot conclude that GRBs with no detected OTs belong to another class of GRBs than GRBs with detected OTs and ii) the majority (>75%) of GRBs for which searches for optical afterglow have been unsuccessful are consistent with no detection if they were similar to bursts like GRB000630 at optical wavelengths.Comment: accepted for publication in A&

    Developmental features of cotton fibre middle lamellae in relation to cell adhesion and cell detachment in cultivars with distinct fibre qualities.

    Get PDF
    Background: Cotton fibre quality traits such as fibre length, strength, and degree of maturation are determined by genotype and environment during the sequential phases of cotton fibre development (cell elongation, transition to secondary cell wall construction and cellulose deposition). The cotton fibre middle lamella (CFML) is crucial for both cell adhesion and detachment processes occurring during fibre development. To explore the relationship between fibre quality and the pace at which cotton fibres develop, a structural and compositional analysis of the CFML was carried out in several cultivars with different fibre properties belonging to four commercial species: Gossypium hirsutum, G. barbadense, G. herbaceum and G. arboreum. Results: Cotton fibre cell adhesion, through the cotton fibre middle lamella (CFML), is a developmentally regulated process determined by genotype. The CFML is composed of de-esterified homogalacturonan, xyloglucan and arabinan in all four fibre-producing cotton species: G. hirsutum, G. barbadense, G. herbaceum and G. arboreum. Conspicuous paired cell wall bulges are a feature of the CFML of two G. hirsutum cultivars from the onset of fibre cell wall detachment to the start of secondary cell wall deposition. Xyloglucan is abundant in the cell wall bulges and in later stages pectic arabinan is absent from these regions. Conclusions: The CFML of cotton fibres is re-structured during the transition phase. Paired cell wall bulges, rich in xyloglucan, are significantly more evident in the G. hirsutum cultivars than in other cotton species
    • 

    corecore