4 research outputs found

    Effect of Intensity on Changes in Cardiac Autonomic Control of Heart Rate and Arterial Stiffness After Equated Continuous Running Training Programs

    Get PDF
    [EN] Background: It is well known that exercise training has positive effects on both cardiac autonomic function and arterial stiffness (AS). However, it is not clear that which exercise training variables, intensity or volume, or both, play a crucial role in this regard. This study investigates the chronic effects of high-volume moderate-intensity training (HVMIT) and low-volume high-intensity training (LVHIT) on heart rate variability (HRV) and AS in sedentary adult men. Materials and Methods: Notably, 45 males (age: 42 ± 5.7 years) were randomly assigned to a control (n = 15), HVMIT (n = 15), or LVHIT (n = 15). The HVMIT group ran three times per week on a treadmill at 50–60% of VO2max for 45–60 min, while the LVHIT trained at 70–85% of VO2max for 25–40 min. Both training protocols were equated by caloric expenditure. HRV, pulse wave velocity (PWV), hemodynamic variables, and body composition were measured before and after 12 weeks. Results: Both protocols (i.e., HVMIT and LVHIT) significantly increased the SD of normal sinus beat intervals (SDNN) and high-frequency (HF) bands (p < 0.05) after 12 weeks. Whereas the low-frequency (LF)-HF ratio decreased significantly in both training protocols (p < 0.05); however, these changes were significantly greater in the LVHIT protocol (p < 0.05). Furthermore, the root mean square of successive RR interval differences (RMSSD) significantly increased only in the LVHIT (p < 0.05). Moreover, a significant decrease in LF and PWV was only observed following the LVHIT protocol (p < 0.05). Some measures of HRV and PWV were significantly correlated (r = 0.275–0.559; p < 0.05). Conclusion: These results show that the LVHIT protocol was more efficient for improving HRV variables and PWV than the HVMIT protocol after 12 weeks of continuous running training. Interestingly, changes in some HRV parameters were related to changes in PWV. Further studies should elaborate on the link between central and peripheral cardiovascular adaptations after continuous and intermittent training regimens differing in intensity

    Effect of Intensity on Changes in Cardiac Autonomic Control of Heart Rate and Arterial Stiffness After Equated Continuous Running Training Programs

    Get PDF
    Background: It is well known that exercise training has positive effects on both cardiac autonomic function and arterial stiffness (AS). However, it is not clear that which exercise training variables, intensity or volume, or both, play a crucial role in this regard. This study investigates the chronic effects of high-volume moderate-intensity training (HVMIT) and low-volume high-intensity training (LVHIT) on heart rate variability (HRV) and AS in sedentary adult men. Materials and Methods: Notably, 45 males (age: 42 ± 5.7 years) were randomly assigned to a control (n = 15), HVMIT (n = 15), or LVHIT (n = 15). The HVMIT group ran three times per week on a treadmill at 50-60% of VO2max for 45-60 min, while the LVHIT trained at 70-85% of VO2max for 25-40 min. Both training protocols were equated by caloric expenditure. HRV, pulse wave velocity (PWV), hemodynamic variables, and body composition were measured before and after 12 weeks. Results: Both protocols (i.e., HVMIT and LVHIT) significantly increased the SD of normal sinus beat intervals (SDNN) and high-frequency (HF) bands (p < 0.05) after 12 weeks. Whereas the low-frequency (LF)-HF ratio decreased significantly in both training protocols (p < 0.05); however, these changes were significantly greater in the LVHIT protocol (p < 0.05). Furthermore, the root mean square of successive RR interval differences (RMSSD) significantly increased only in the LVHIT (p < 0.05). Moreover, a significant decrease in LF and PWV was only observed following the LVHIT protocol (p < 0.05). Some measures of HRV and PWV were significantly correlated (r = 0.275-0.559; p < 0.05). Conclusion: These results show that the LVHIT protocol was more efficient for improving HRV variables and PWV than the HVMIT protocol after 12 weeks of continuous running training. Interestingly, changes in some HRV parameters were related to changes in PWV. Further studies should elaborate on the link between central and peripheral cardiovascular adaptations after continuous and intermittent training regimens differing in intensity. Keywords: HRV; arterial stiffness; autonomic function; blood pressure; training intensity; vascular function

    Astaxanthin Supplemented with High-Intensity Functional Training Decreases Adipokines Levels and Cardiovascular Risk Factors in Men with Obesity

    No full text
    The aim of this study was to investigate the effects of 12 weeks of high-intensity training with astaxanthin supplementation on adipokine levels, insulin resistance and lipid profiles in males with obesity. Sixty-eight males with obesity were randomly stratified into four groups of seventeen subjects each: control group (CG), supplement group (SG), training group (TG), and training plus supplement group (TSG). Participants underwent 12 weeks of treatment with astaxanthin or placebo (20 mg/d capsule daily). The training protocol consisted of 36 sessions of high-intensity functional training (HIFT), 60 min/sessions, and three sessions/week. Metabolic profiles, body composition, anthropometrical measurements, cardio-respiratory indices and adipokine [Cq1/TNF-related protein 9 and 2 (CTRP9 and CTRP2) levels, and growth differentiation factors 8 and 15 (GDF8 and GDF15)] were measured. There were significant differences for all indicators between the groups (p p p > 0.05). Levels of GDF8 were similar in the SG and TG groups (p > 0.05), with reductions of GDF15 levels in both training groups (p < 0.05). A total of 12 weeks of astaxanthin supplementation and exercise training decreased adipokines levels, body composition (weight, %fat), anthropometrical factors (BMI), and improved lipid and metabolic profiles. These benefits were greater for men with obesity in the TSG group

    Astaxanthin Supplemented with High-Intensity Functional Training Decreases Adipokines Levels and Cardiovascular Risk Factors in Men with Obesity

    No full text
    International audienceThe aim of this study was to investigate the effects of 12 weeks of high-intensity training with astaxanthin supplementation on adipokine levels, insulin resistance and lipid profiles in males with obesity. Sixty-eight males with obesity were randomly stratified into four groups of seventeen subjects each: control group (CG), supplement group (SG), training group (TG), and training plus supplement group (TSG). Participants underwent 12 weeks of treatment with astaxanthin or placebo (20 mg/d capsule daily). The training protocol consisted of 36 sessions of high-intensity functional training (HIFT), 60 min/sessions, and three sessions/week. Metabolic profiles, body composition, anthropometrical measurements, cardio-respiratory indices and adipokine [Cq1/TNF-related protein 9 and 2 (CTRP9 and CTRP2) levels, and growth differentiation factors 8 and 15 (GDF8 and GDF15)] were measured. There were significant differences for all indicators between the groups (p andlt; 0.05). Post-hoc analysis indicated that the levels of CTRP9, CTRP2, and GDF8 were different from CG (p andlt; 0.05), although levels of GDF15 were similar to CG (p andgt; 0.05). Levels of GDF8 were similar in the SG and TG groups (p andgt; 0.05), with reductions of GDF15 levels in both training groups (p andlt; 0.05). A total of 12 weeks of astaxanthin supplementation and exercise training decreased adipokines levels, body composition (weight, %fat), anthropometrical factors (BMI), and improved lipid and metabolic profiles. These benefits were greater for men with obesity in the TSG group
    corecore