99 research outputs found

    Status of sperm functionality assessment in wildlife species: From fish to primates

    Get PDF
    (1) Background: in order to propagate wildlife species (covering the whole spectrum from species suitable for aquaculture to endangered species), it is important to have a good understanding of the quality of their sperm, oocytes and embryos. While sperm quality analyses have mainly used manual assessment in the past, such manual estimations are subjective and largely unreliable. Accordingly, quantitative and cutting‐edge approaches are required to assess the various aspects of sperm quality. The purpose of this investigation was to illustrate the latest technology used in quantitative evaluation of sperm quality and the required cut‐off points to distinguish the differential grades of fertility potential in a wide range of vertebrate species. (2) Methods: computer‐aided sperm analysis (CASA) with an emphasis on sperm motility, 3D tracking and flagellar and sperm tracking analysis (FAST), as well as quantitative assessment of sperm morphology, vitality, acro-some status, fragmentation and many other complimentary technologies. (3) Results: Assessing sperm quality revealed a great deal of species specificity. For example, in freshwater fish like trout, sperm swam in a typical tight helical pattern, but in seawater species sperm motility was more progressive. In amphibian species, sperm velocity was slow, in contrast with some bird species (e.g., ostrich). Meanwhile, in African elephant and some antelope species, fast progressive sperm was evident. In most species, there was a high percentage of morphologically normal sperm, but gener-ally, low percentages were observed for motility, vitality and normal morphology evident in mo-nogamous species. (4) Conclusions: Sperm quality assessment using quantitative methodologies such as CASA motility, FAST analysis, morphology and vitality, as well as more progressive meth-odologies, assisted in better defining sperm quality—specifically, sperm functionality of high‐qual-ity sperm. This approach will assist in the propagation of wildlife species. © 2021 by the author. Licensee MDPI, Basel, Switzerland

    Birth of Koalas Phascolarctos cinereus at Lone Pine Koala Sanctuary following artificial insemination

    Get PDF
    This paper documents the successful development of an artificial insemination (AI) programme for the Koala Phascolurctos cinereus. The protocols for trials involving two methods to induce ovulation and two insemination techniques are described. In Trial 1, interrupted coitus using a 'teaser'♂ successfully induced ovulation in nine Koalas. Five ♀♀ were inseminated while conscious using a modified 'foley catheter' (Cook insemination catheter) resulting in the births of two offspring. The other four ♀♀ were anaesthetized and inseminated using a technique which allowed visualization of the most cranial portion of the urogenital sinus, where semen was deposited using a 3.5 Fr. 'Tom-cat catheter' (urogen-itoscopic insemination). Three of the four ♀♀ inseminated by this technique produced pouch young. Microsatellite analysis of DNA from the pouch young excluded the teaser ♀♀ as possible sires, confirming that all offspring were sired by donor sperm. In Trial 2, eight ♀♀ were induced to ovulate by injecting them with 250 International Units of human chorionic gonadotrophin (hCG). A luteal phase was confirmed in all eight ♀♀ but only one gave birth following urogenitoscopic insemination. The Koala pouch young in this study are the first of any marsupial to be conceived and born following A1 procedures. Details of the A1 procedures used are presented and the significance of A1 to the conservation biology of P. cinereus discussed

    Analysis of today's train division

    No full text
    The information used in this paper comes from Trafikverket's delivery monitoring system. It consists of information about planned train missions on the Swedish railways for the years 2014 to 2017 during week four (except planned train missions on Roslagsbanan and Saltsjöbanan). Trafikanalys with help from Trafikverket presents public statistics for short-distance trains, middle-distance trains and long-distance trains on Trafikanalys website. The three classes of trains have no scientific basis. The purpose of this study is therefore to analyze if today's classes of trains can be used and which variables that have importance for the classification. The purpose of this study is also to analyze if there is a better way to categorize the classes of trains when Trafikanalys publishes public statistics. The statistical methods that are used in this study are decision tree, neural network and hierarchical clustering. The result obtained from the decision tree was a 92.51 percent accuracy for the classification of Train type. The most important variables for Train type were Train length, Planned train kilometers and Planned km/h.Neural networks were used to investigate whether this method could also provide a similar result as the decision tree too strengthening the reliability. Neural networks got an 88 percent accuracy when classifying Train type. Based on these two results, it indicates that the larger proportion of train assignments could be classified to the correct Train Type. This means that the current classification of Train type works when Trafikanalys presents official statistics. For the new train classification, three groups were analyzed when hierarchical clustering was used. These three groups were not the same as the group's short-distance trains, middle-distance trains and long-distance trains. Because the new divisions have blended the various passenger trains, this result does not help to find a better subdivision that can be used for when Trafikanalys presents official statistics.Datamaterialet som används i uppsatsen kommer ifrån Trafikverkets leveransuppföljningssystem. I datamaterialet finns information om planerade tåguppdrag för de svenska järnvägarna för år 2014 till 2017 under vecka fyra (bortsett från planerade tåguppdrag för Roslagsbanan och Saltsjöbanan). Trafikanalys med hjälp av Trafikverket redovisar officiell statistik för kortdistanståg, medeldistanståg och långdistanståg på Trafikanalys hemsida. De tre tågkategorierna har inte någon vetenskaplig grund. Syftet med denna studie är därför att undersöka ifall dagens tågindelning fungerar och vilka variabler som hänger ihop med denna indelning. Syftet är även att undersöka om det finns någon bättre tågindelning som kan användas när Trafikanalys redovisar officiell statistik. De statistiska metoder studien utgått ifrån är beslutsträd, neurala nätverk och hierarkisk klustring. Resultatet som erhölls från beslutsträdet var en ackuratess på 92.51 procent för klassificeringen av Tågsort. De variabler som hade störst betydelse för Tågsort var Tåglängd, Planerade tågkilometrar och Planerad km/h. Neurala nätverk användes för att undersöka om även denna metod kunde ge ett liknande resultat som beslutsträdet och därmed stärka tillförlitligheten. Neurala nätverket fick en ackuratess på 88 procent vid klassificeringen av Tågsort. Utifrån dessa två resultat tyder det på att den större andelen tåguppdrag kunde klassificeras till rätt Tågsort. Det innebär att nuvarande klassificering av Tågsort fungerar när Trafikanalys presenterar officiell statistik. För den nya tågklassificeringen analyserades tre grupper när hierarkisk klustring användes. Dessa tre grupper liknande inte dagens indelning för kortdistanståg, medeldistanståg och långdistanståg. Eftersom att de nya indelningarna blandade de olika persontågen går det inte med detta resultat att hitta en bättre indelning som kan användas när Trafikanalys presenterar officiell statistik

    Analysis of today's train division

    No full text
    The information used in this paper comes from Trafikverket's delivery monitoring system. It consists of information about planned train missions on the Swedish railways for the years 2014 to 2017 during week four (except planned train missions on Roslagsbanan and Saltsjöbanan). Trafikanalys with help from Trafikverket presents public statistics for short-distance trains, middle-distance trains and long-distance trains on Trafikanalys website. The three classes of trains have no scientific basis. The purpose of this study is therefore to analyze if today's classes of trains can be used and which variables that have importance for the classification. The purpose of this study is also to analyze if there is a better way to categorize the classes of trains when Trafikanalys publishes public statistics. The statistical methods that are used in this study are decision tree, neural network and hierarchical clustering. The result obtained from the decision tree was a 92.51 percent accuracy for the classification of Train type. The most important variables for Train type were Train length, Planned train kilometers and Planned km/h.Neural networks were used to investigate whether this method could also provide a similar result as the decision tree too strengthening the reliability. Neural networks got an 88 percent accuracy when classifying Train type. Based on these two results, it indicates that the larger proportion of train assignments could be classified to the correct Train Type. This means that the current classification of Train type works when Trafikanalys presents official statistics. For the new train classification, three groups were analyzed when hierarchical clustering was used. These three groups were not the same as the group's short-distance trains, middle-distance trains and long-distance trains. Because the new divisions have blended the various passenger trains, this result does not help to find a better subdivision that can be used for when Trafikanalys presents official statistics.Datamaterialet som används i uppsatsen kommer ifrån Trafikverkets leveransuppföljningssystem. I datamaterialet finns information om planerade tåguppdrag för de svenska järnvägarna för år 2014 till 2017 under vecka fyra (bortsett från planerade tåguppdrag för Roslagsbanan och Saltsjöbanan). Trafikanalys med hjälp av Trafikverket redovisar officiell statistik för kortdistanståg, medeldistanståg och långdistanståg på Trafikanalys hemsida. De tre tågkategorierna har inte någon vetenskaplig grund. Syftet med denna studie är därför att undersöka ifall dagens tågindelning fungerar och vilka variabler som hänger ihop med denna indelning. Syftet är även att undersöka om det finns någon bättre tågindelning som kan användas när Trafikanalys redovisar officiell statistik. De statistiska metoder studien utgått ifrån är beslutsträd, neurala nätverk och hierarkisk klustring. Resultatet som erhölls från beslutsträdet var en ackuratess på 92.51 procent för klassificeringen av Tågsort. De variabler som hade störst betydelse för Tågsort var Tåglängd, Planerade tågkilometrar och Planerad km/h. Neurala nätverk användes för att undersöka om även denna metod kunde ge ett liknande resultat som beslutsträdet och därmed stärka tillförlitligheten. Neurala nätverket fick en ackuratess på 88 procent vid klassificeringen av Tågsort. Utifrån dessa två resultat tyder det på att den större andelen tåguppdrag kunde klassificeras till rätt Tågsort. Det innebär att nuvarande klassificering av Tågsort fungerar när Trafikanalys presenterar officiell statistik. För den nya tågklassificeringen analyserades tre grupper när hierarkisk klustring användes. Dessa tre grupper liknande inte dagens indelning för kortdistanståg, medeldistanståg och långdistanståg. Eftersom att de nya indelningarna blandade de olika persontågen går det inte med detta resultat att hitta en bättre indelning som kan användas när Trafikanalys presenterar officiell statistik

    Analysis of today's train division

    No full text
    The information used in this paper comes from Trafikverket's delivery monitoring system. It consists of information about planned train missions on the Swedish railways for the years 2014 to 2017 during week four (except planned train missions on Roslagsbanan and Saltsjöbanan). Trafikanalys with help from Trafikverket presents public statistics for short-distance trains, middle-distance trains and long-distance trains on Trafikanalys website. The three classes of trains have no scientific basis. The purpose of this study is therefore to analyze if today's classes of trains can be used and which variables that have importance for the classification. The purpose of this study is also to analyze if there is a better way to categorize the classes of trains when Trafikanalys publishes public statistics. The statistical methods that are used in this study are decision tree, neural network and hierarchical clustering. The result obtained from the decision tree was a 92.51 percent accuracy for the classification of Train type. The most important variables for Train type were Train length, Planned train kilometers and Planned km/h.Neural networks were used to investigate whether this method could also provide a similar result as the decision tree too strengthening the reliability. Neural networks got an 88 percent accuracy when classifying Train type. Based on these two results, it indicates that the larger proportion of train assignments could be classified to the correct Train Type. This means that the current classification of Train type works when Trafikanalys presents official statistics. For the new train classification, three groups were analyzed when hierarchical clustering was used. These three groups were not the same as the group's short-distance trains, middle-distance trains and long-distance trains. Because the new divisions have blended the various passenger trains, this result does not help to find a better subdivision that can be used for when Trafikanalys presents official statistics.Datamaterialet som används i uppsatsen kommer ifrån Trafikverkets leveransuppföljningssystem. I datamaterialet finns information om planerade tåguppdrag för de svenska järnvägarna för år 2014 till 2017 under vecka fyra (bortsett från planerade tåguppdrag för Roslagsbanan och Saltsjöbanan). Trafikanalys med hjälp av Trafikverket redovisar officiell statistik för kortdistanståg, medeldistanståg och långdistanståg på Trafikanalys hemsida. De tre tågkategorierna har inte någon vetenskaplig grund. Syftet med denna studie är därför att undersöka ifall dagens tågindelning fungerar och vilka variabler som hänger ihop med denna indelning. Syftet är även att undersöka om det finns någon bättre tågindelning som kan användas när Trafikanalys redovisar officiell statistik. De statistiska metoder studien utgått ifrån är beslutsträd, neurala nätverk och hierarkisk klustring. Resultatet som erhölls från beslutsträdet var en ackuratess på 92.51 procent för klassificeringen av Tågsort. De variabler som hade störst betydelse för Tågsort var Tåglängd, Planerade tågkilometrar och Planerad km/h. Neurala nätverk användes för att undersöka om även denna metod kunde ge ett liknande resultat som beslutsträdet och därmed stärka tillförlitligheten. Neurala nätverket fick en ackuratess på 88 procent vid klassificeringen av Tågsort. Utifrån dessa två resultat tyder det på att den större andelen tåguppdrag kunde klassificeras till rätt Tågsort. Det innebär att nuvarande klassificering av Tågsort fungerar när Trafikanalys presenterar officiell statistik. För den nya tågklassificeringen analyserades tre grupper när hierarkisk klustring användes. Dessa tre grupper liknande inte dagens indelning för kortdistanståg, medeldistanståg och långdistanståg. Eftersom att de nya indelningarna blandade de olika persontågen går det inte med detta resultat att hitta en bättre indelning som kan användas när Trafikanalys presenterar officiell statistik

    Daños causados en el deporte: responsabilidad extracontractual derivada de actividades deportivas.

    No full text
    Bibliografia p. 18El ámbito de estudio lo voy a centrar en la responsabilidad civil extracontractual en los deportes de riesgo bilateral, es decir, en la capacidad que tienen distintos deportes en producir un daño a uno o varios de sus participantes, y la consecuencia legal que constituye dicho hecho. Los deportes de riesgo bilateral, son aquellos donde en la celebración de los mismos hay un contacto físico entre los jugadores, como puede ser el fútbol, el kickboxing, el baloncesto, etc… No hay que olvidar que existen también otros riesgos ocasionados en la disputa de un acontecimiento deportivo que no tienen por qué proceder del contacto del otro oponente y que los tribunales también tienen en cuenta a la hora de aceptar una demanda por este tipo de responsabilidad, en ello entraría la caída por ejemplo de una portería en un campo de fútbol que produjese una lesión o un daño a uno de los participantes, o el desplome de una grada ocasionado daños a los integrantes del juego, etc… Intentaré que mi estudio haya una variedad donde se pueda observar este tipo de responsabilidad extracontractual. Realizaré un análisis jurisprudencial de varias sentencias en diferentes ámbitos del deporte, así como una opinión personal o mejor dicho, una extracción personal de cada una de ellas
    corecore