746 research outputs found

    Adiabatic Tracking of a State: a New Route to Nonequilibrium Physics

    Get PDF
    We present a novel numerical approach to track the response of a quantum system to an external perturbation that is progressively switched-on. The method is applied, within the framework of the density matrix renormalization group technique, to track current-carrying states of interacting fermions in one dimension and in presence of an Aharonov-Bohm magnetic flux. This protocol allows us to access highly excited states. We also discuss the connection with the entanglement entropy of these excited states

    Quantum phase transitions in multileg spin ladders with ring exchange

    Get PDF
    Four-spin exchange interaction has been raising intriguing questions regarding the exotic phase transitions it induces in two-dimensional quantum spin systems. In this context, we investigate the effects of a cyclic four-spin exchange in the quasi-1D limit by considering a general N-leg spin ladder. We show by means of a low-energy approach that, depending on its sign, this ring exchange interaction can engender either a staggered or a uniform dimerization from the conventional phases of spin ladders. The resulting quantum phase transition is found to be described by the SU(2)_N conformal field theory. This result, as well as the fractional value of the central charge at the transition, is further confirmed by a large-scale numerical study performed by means of Exact Diagonalization and Density Matrix Renormalization Group approaches for N \le 4

    Competing superconducting instabilities in the one-dimensional p-band degenerate cold fermionic system

    Full text link
    The zero-temperature phase diagram of pp-orbital two-component fermionic system loaded into a one-dimensional optical lattice is mapped out by means of analytical and numerical techniques. It is shown that the pp-band model away from half-filling hosts various competing superconducting phases for attractive and repulsive interactions. At quarter filling, we analyze the possible formation of incompressible Mott phases and in particular for repulsive interactions, we find the occurrence of a Mott transition with the formation of fully gapped bond-ordering waves.Comment: published versio

    Symmetry-protected topological phases of alkaline-earth cold fermionic atoms in one dimension

    Full text link
    We investigate the existence of symmetry-protected topological phases in one-dimensional alkaline-earth cold fermionic atoms with general half-integer nuclear spin I at half filling. In this respect, some orbital degrees of freedom are required. They can be introduced by considering either the metastable excited state of alkaline-earth atoms or the p-band of the optical lattice. Using complementary techniques, we show that SU(2) Haldane topological phases are stabilised from these orbital degrees of freedom. On top of these phases, we find the emergence of topological phases with enlarged SU(2I+1) symmetry which depend only on the nuclear spin degrees of freedom. The main physical properties of the latter phases are further studied using a matrix-product state approach. On the one hand, we find that these phases are symmetry-protected topological phases, with respect to inversion symmetry, when I=1/2,5/2,9/2,..., which is directly relevant to ytterbium and strontium cold fermions. On the other hand, for the other values of I(=half-odd integer), these topological phases are stabilised only in the presence of exact SU(2I+1)-symmetry

    Magnetization plateaux in the classical Shastry-Sutherland lattice

    Get PDF
    We investigated the classical Shastry-Sutherland lattice under an external magnetic field in order to understand the recently discovered magnetization plateaux in the rare-earth tetraborides compounds RB4_4. A detailed study of the role of thermal fluctuations was carried out by mean of classical spin waves theory and Monte-Carlo simulations. Magnetization quasi-plateaux were observed at 1/3 of the saturation magnetization at non zero temperature. We showed that the existence of these quasi-plateaux is due to an entropic selection of a particular collinear state. We also obtained a phase diagram that shows the domains of existence of different spin configurations in the magnetic field versus temperature plane.Comment: 4 pages, proceedings of HFM200

    Magnetization Process of the Classical Heisenberg Model on the Shastry-Sutherland Lattice

    Full text link
    We investigate classical Heisenberg spins on the Shastry-Sutherland lattice and under an external magnetic field. A detailed study is carried out both analytically and numerically by means of classical Monte-Carlo simulations. Magnetization pseudo-plateaux are observed around 1/3 of the saturation magnetization for a range of values of the magnetic couplings. We show that the existence of the pseudo-plateau is due to an entropic selection of a particular collinear state. A phase diagram that shows the domains of existence of those pseudo-plateaux in the (h,T)(h, T) plane is obtained.Comment: 9 pages, 11 figure

    Interceptive timing: prior knowledge matters

    Get PDF
    Fast interceptive actions, such as catching a ball, rely upon accurate and precise information from vision. Recent models rely on flexible combinations of visual angle and its rate of expansion of which the tau parameter is a specific case. When an object approaches an observer, however, its trajectory may introduce bias into tau-like parameters that render these computations unacceptable as the sole source of information for actions. Here we show that observer knowledge of object size influences their action timing, and known size combined with image expansion simplifies the computations required to make interceptive actions and provides a route for experience to influence interceptive action

    RETROFIT OF EXISTING RAILWAY BRIDGES OF SHOR TO MEDIUM SPANS FOR HIGH-SPEED TRAFFIC USING VISCOELASTIC DAMPERS

    Get PDF
    Elsevier Moliner Cabedo, E.; Museros Romero, P.; Martínez Rodrigo, MDLD. (2012). Retrofit of existing railway bridges of short to medium spans for high-speed traffic using viscoelastic dampers. Engineering Structures. 40:519-528. doi:10.1016Structures. 40:519-528. doi:10. /j.engstruct.2012 Abstract. This paper presents a study on the energy-absorbing capacities of viscoelastic dampers (VEDs) for reducing the resonant vibrations of simply supported high-speed railway bridges of short to medium span. The proposed solution is based on retrofitting the bridge with a set of discrete VEDs connected to the slab and to an auxiliary structure, placed underneath the bridge deck and resting on the abutments. In this investigation attention is focused on mitigating flexural vibrations; therefore, both the bridge and the auxiliary structure are modelled as simply supported beams with Bernoulli−Euler (B-E) behavior, whereas a discrete fractional derivative model simulates the behavior of the damping material. Firstly, a parametric study of this planar model is carried out, which has led to a dimensioning procedure of the dissipative system. The technical feasibility of this particular retrofit design is numerically evaluated by applying it to a numerical model of a simply supported railway bridge with inadmissible vertical accelerations. Numerical results show that the dynamic response of the structure can be significantly reduced in resonance with the proposed damping system.

    Reducing Shower Duration in Tourist Accommodations: A Covert True Experiment of Continuous Real-Time Eco-Feedback and Persuasive Messaging

    Get PDF
    This study inductively applies the Feedback Intervention Theory by empirically demonstrating the effectiveness of continuous, real-time eco-feedback and its interaction with motivational factors in modifying showering behavior. We conducted a covert true experiment across six tourist accommodations in Denmark, Spain, and the UK, where we deployed smart technology, in the form of a timer to provide the eco-feedback, coupled with persuasive messages. Data from over 17,500 showers showed that continuous, real-time eco-feedback reduced water runtime by 25.79% (CI = 8.24%; 39.98%). When the eco-feedback was paired with the most effective message—priming pro-environmental values and requiring a high effort to comply—water runtime was reduced by 23.55% (CI = 17.53%; 29.13%). The study’s robust experimental design, and its emphasis on actual behavior measurement, highlight the potential of smart technology to facilitate resource conservation

    Phase diagrams of one-dimensional half-filled two-orbital SU(N) cold fermions systems

    Full text link
    We investigate possible realizations of exotic SU(N) symmetry-protected topological (SPT) phases with alkaline-earth cold fermionic atoms loaded into one-dimensional optical lattices. A thorough study of two-orbital generalizations of the standard SU(N) Fermi-Hubbard model, directly relevant to recent experiments, is performed. Using state-of-the-art analytical and numerical techniques, we map out the zero-temperature phase diagrams at half-filling and identify several Mott-insulating phases. While some of them are rather conventional (non-degenerate, charge-density-wave or spin-Peierls like), we also identify, for even-N, two distinct types of SPT phases: an orbital-Haldane phase, analogous to a spin-N/2 Haldane phase, and a topological SU(N) phase, which we fully characterize by its entanglement properties. We also propose sets of non-local order parameters that characterize the SU(N) topological phases found here.Comment: 38 pages, published versio
    • 

    corecore