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Abstract. This paper presents a study on the energy-absorbing capacities of viscoelastic 

dampers (VEDs) for reducing the resonant vibrations of simply supported high-speed railway 

bridges of short to medium span. The proposed solution is based on retrofitting the bridge 

with a set of discrete VEDs connected to the slab and to an auxiliary structure, placed 

underneath the bridge deck and resting on the abutments. In this investigation attention is 

focused on mitigating flexural vibrations; therefore, both the bridge and the auxiliary structure 

are modelled as simply supported beams with Bernoulli−Euler (B-E) behavior, whereas a 

discrete fractional derivative model simulates the behavior of the damping material. Firstly, a 

parametric study of this planar model is carried out, which has led to a dimensioning 

procedure of the dissipative system. The technical feasibility of this particular retrofit design 

is numerically evaluated by applying it to a numerical model of a simply supported railway 

bridge with inadmissible vertical accelerations. Numerical results show that the dynamic 

response of the structure can be significantly reduced in resonance with the proposed damping 

system. 
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1. INTRODUCTION 

The dynamic behaviour of railway bridges has become an issue of main concern between 

scientists and engineers over the last 20 years, due to the extensive construction of new High-

Speed lines and also the use of old lines for higher speeds.  

Fast trains can induce resonance situations in railway bridges, being the short-to-medium-

span bridges where the main structural elements are simpy supported (S-S), the most critical 

in this regard. When the train travels at a resonant speed, high levels of the deck vertical 

acceleration are to be expected,  which can result in adverse consequences such as ballast 

deconsolidation, passenger discomfort or higher risk of derailment. This fact has been 

reported by some members of the D-214 Committee of the European Rail Research Institute: 

Frýba [6] and Mancel et al. [13]. In such circumstances, the bridge deck has to be stiffened or 

replaced in order to keep the maximum vertical acceleration below the Serviceability Limit 

State of 3.5 m/s2 for ballasted tracks [5], avoiding maintenance and security problems. Clearly, 

one major concern is the cost of the strengthening/replacement operations. 

Several authors have evaluated the possibility of controlling high-speed trains induced 

vibrations in railway bridges with passive energy dissipation devices, as an alternative to the 

classical solutions (deck strengthening/replacement). Kwon et al. [11] and Wang et al. [24] 

have investigated the application of Tuned Mass Dampers (TMDs) for this purpose. Aside 

from passive TMDs, a couple of authors have also addressed the application of pure viscous 

dampers (FVDs) to reduce the amplification in beams traversed by moving loads, such as 

Oliveto et al. [21] and Museros and Martínez-Rodrigo [19, 15, 16]. In particular, the latter 

authors propose an alternative for the retrofit of existing bridges that show inadequate 

dynamic performance under the passage trains at higher speeds. The proposed retrofitting 

system consists of a simply supported auxiliary beam placed parallel to the main one (the one 
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that supports the passage of the moving loads) and a set of linear FVDs that connect both 

beams at several sections. The authors conclude that there exists an optimum combination of 

auxiliary beam and value of the FVD constants that minimize the main beam response, and 

the proposed retrofitting system may apply to other situations where simply supported beams 

vibrate at resonance due to different causes.  

From a practical point of view, it is also of interest to investigate the application of 

viscoelastic dampers (VEDs) to vibration control in high-speed railway bridges, due to its fine 

damping properties, cheap cost, simple construction and excellent performance in time for 

what concerns aging properties and maintenance [20]. The application of viscoelastic 

materials to civil engineering structures appears to have begun in 1969, when approximately 

10000 viscoelastic dampers were installed in each of the twin towers of the World Trade 

Center in New York to reduce wind-induced vibrations [12]. Lately, they have been 

investigated for earthquake resistant design as a viable candidate to be incorporated either into 

new constructions or existing buildings on retrofit for earthquake hazard mitigation (for a 

detailed literature review see Samali and Kwok [22]). More recent outdoor applications can 

also be found in stay cables of short-span bridges, such as Traunsteg in Wels (Austria), or in 

the roof of Chien-Tan railroad Station in Taipei; both of them are related to the control of 

wind-induced vibrations. Particularly as regards its application to railway bridges, Choo et al. 

[4] propose the retrofit of long-span composite bridges (from 40 to 60 m) with VEDs.  

Viscoelastic dampers are normally made of viscoelastic material layers bonded with steel 

plates (Fig. 1.), and dissipate energy through shear deformation. The behavior of viscoelastic 

dampers is not purely viscous but exhibits also instantaneous elastic response; and is usually 

described by two main parameters: the Shear Storage Modulus, GE and the Loss Factor, ; 

both depend strongly on strain ratio, vibration frequency and temperature [9, 3], and many 

authors have investigated different models to simulate the VE behavior. A classical approach 
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uses a mechanical model based on combinations of springs and dashpots elements, such as 

Maxwell model, the Kelvin-Voigt model, and complex combinations of them (see [1]). 

However the agreement with the observed behavior is usually poor, unless the model 

comprises an elevated number of parameters which renders the method rather cumbersome. A 

review of the literature indicates a predominant use of the fractional derivative model for 

viscoelastic dampers, since it is capable of characterizing broad-band viscoelastic behaviour 

with a small number of model constants [2]. For instance, Koh and Kelly [10] modelled 

elastomeric bearings using a fractional-order Kelvin model and observed the superiority of its 

performance to that of the standard Kelvin model. Also, Tsai and Lee [23] developed a model 

based on fractional derivatives in good agreement with experimental tests, and an advance 

finite element formulation for the viscoelastic damper to be implemented in a computer 

program.  

In the present study we evaluate the retrofit of high speed railway bridges by using the model 

proposed by Tsai and Lee [23], which is capable of describing the material behavior at 

different temperature and deformation levels. 

The approach adopted herein is based on three main facts: (i) In a large number of cases, the 

excessive vibrations in simply supported bridges are caused by resonances of the first bending 

mode; (ii) if the damping present in the structure were sufficiently high the amplitude of the 

first mode resonances would not exceed allowable limits. The required level of damping can 

be computed using simple dynamic analysis tools; (iii) when the retrofitting system is 

connected to the bridge, the dynamic behavior at resonance is similar to that of a one-degree-

of-freedom (1DOF) system subjected to harmonic load. Or in other words, the first bending 

mode is affected by the damping system approximately as if it were introducing an external 

increase of the bridge damping ratio. 
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Therefore, a procedure can be devised in order to dimension the damping system in a first 

approach. Subsequently, an analysis is carried out with a view to discovering whether the 

required level of external damping has been reached. If this were so, the structure would 

satisfy the serviceability limits related to the vertical vibrations (accelerations) of the deck. 

Otherwise, the damping system is redimensioned following an iterative process until the 

maximum accelerations satisfy the serviceability limits.  

2. RETROFIT CONFIGURATION 

The configuration of the retrofitting system presented here is similar to the one presented in a 

previous work of Museros and Martínez-Rodrigo [19]. The difference comes from the use of 

VEDs instead of FVDs: in this work a set of VEDs link the bridge with the auxiliary beam, 

and the energy is dissipated through shear deformation. Unlike the FVDs, the VEDs do not 

only actuate as energy dissipaters, but they also modify the overall stiffness of the system. Fig. 

2 shows a possible configuration of the retrofitting system. 

The dissipative system consists of two main elements. The first element is an auxiliary steel 

or pre-stressed concrete beam placed under the slab, among the original girders of the bridge 

deck. The second is a set of VEDs that link the vertical motion of certain sections of both 

systems. The auxiliary beam is simply supported at the abutments and does not contact the 

slab at any intermediate section.  Although Fig. 2 presents a hollow cross-section for the 

auxiliary beam, any other kind of section could be used.  

The influence of the local deformation of the slab between two adjacent girders, a fact that 

could compromise the technical feasibility of this retrofitting system, was also studied by 

Martinez et. al in [15] using FVDs, concluding that the proposed solution enables the 

transmission of forces with no relevant loses of displacement.  
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3. PLANAR MODEL OF THE RETROFITTING SYSTEM 

The behavior of the bridge with the retrofitting system is modelled using a planar system: a 

simply supported Bernoulli−Euler (B−E) main beam, which represents the bridge deck, is 

connected to an auxiliary, simply supported B−E beam. The main and auxiliary beams rest 

directly on the abutments without any intermediate elastic bearing. In typical applications the 

auxiliary beam is placed underneath the main one, and a series of discrete VEDs link the 

vertical motion of certain sections of the beams. The resulting system is symmetric with 

respect to the mid-span section of the bridge.  

As regards railway bridges, the results of the planar model are only applicable to single-track 

non-skewed bridges, since the torsion oscillations of beams subjected to eccentric moving 

loads are not taken into account. Nevertheless, single-track bridges, particularly medium to 

short span ones, are usually the most unfavorable cases found in practice due to their low 

linear mass, and in such structures it is highly likely that resonance will be related to 

oscillations of the first bending mode. Fig. 3 shows a scheme of the planar model used in this 

investigation. 

In Fig. 3, Pk and dk are the modulus and the distance from the kth load to the beginning of the 

beam at t = 0. The loads acting on the structure are assumed to be constant-valued.  

The model adopted here to represent the behavior of VEDs is based on the work of Tsai and 

Lee [23], where the authors present an advanced finite element formulation for VEDs based 

on fractional derivatives which is in good agreement with experimental results. As a 

remarkable feature, this model is able to reproduce the decay of the material properties 

observed during the first cycles of oscillation, and also due to ambient temperature variations. 

In the mentioned reference, Tsai and Lee use this formulation to study the improvement of 

seismic resistance of buildings with VEDs. In the present work, we have applied the same 
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approach to the retrofitting of high-speed railway bridges; a brief summary of the method 

follows. 

From the fractional shear stress-strain relationship of a VED material [2], 

 ( ) ( ) [ ( )],E Ct G t G D t      (1) 

where τ(t) and γ(t) are the shear stress and shear strain, GE, GC, are the two constitutive model 

parameters, and the term Dα[γ(t)] is the fractional derivative, defined as follows: 
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[ ( )] ,
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D t d
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where Г(·) is the gamma function and 0<α<1. The constitutive model parameters are 
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A0, α, β, μ y θ are coefficients of the viscoelastic material to be determined from the 

experimental data, and T and T0 stand for the ambient temperature and the reference 

temperature.  

One can discretise equation (1) at time step NΔt assuming linear variation of the shear strain 

γ(t) between two consecutive time steps, (n-1)Δt and nΔt. After doing so, it is rewritten as 
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The term H(NΔt), called the previous time effect of the strain, is 
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where γ(·) is the shear strain of the VED. The term H(NΔt) depends on the whole time history 

of the system and therefore has a significant computational cost. However, when dynamical 
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oscillating responses are considered, it is possible to truncate the displacement history 

considering only the most recent one [8]. Finally, according to Tsai and Lee [23], the damper 

force at time step t=NΔt along the y direction is 

 ( ) ( ) ( ),    D D VF N t K D N t F N t  (6) 

where KD is 

 
( )

1
(2 )

 
  

  
D

S t
K G

h
 (7a) 

and S and h are the shear area and thickness of the VED respectively. The previous time effect 

of the equivalent VED force, FV(NΔt), and the VED elongation, D(NΔt), are given by  

 
( )

( ) ,
(2 )


 
 

V

G t
F H N t S  (7b) 

 ( ) ( ). B b

B Di b DiD y x y x  (7c) 

Subscripts B and b indicate the vertical displacement of the VED end in contact with the main 

and auxiliary beam, respectively, and xDi is the location of the ith damper along the X axis of 

the main beam. The shear strain (NΔt) is computed as 

 
( )

( )


  
D N t

N t
h

. (8) 

4. GOVERNING EQUATIONS OF MOTION OF THE RETROFITTING SYSTEM 

SUBJECTED TO MOVING LOADS 

Several authors, such as Frýba [6, 7], Yang et al. [25] or Museros and Alarcón [18] have 

presented the partial differential equation governing the flexural behaviour of a simply 

supported beam subjected to a train of concentrated loads. However, if we introduce an 

auxiliary beam with several VEDs connecting both beams, the governing equations of motion 
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need to be modified. The motion is obtained as the superposition of NB and Nb modes for the 

main and auxiliary beams, respectively. The presence of VEDs linking the oscillations in 

some sections of the beams causes the modal equations of this two structural elements to be 

coupled; for this reason, the time-histories of the modal contributions taken into account are a 

function of the order of the modal system of equations (i.e. they are a function of NB and Nb). 

When a particular bridge is analyzed, a sensitivity analysis is carried out to determine whether 

the response has converged for the values of NB and Nb used in the calculations.  

The system of equations of the retrofitting system, written in matrix form and in modal 

coordinates is 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ).T T

D Vt t t t t t t    Mξ Cξ Κξ R K Rξ R F Q  (9) 

The column vector of modal displacements, which are the unknowns, is 

  1 1( )
B b

T
B B b b

N Nt     ξ . (10a) 

This system of equations will be numerically integrated with an implicit predictor-corrector 

method.  The total number of equations, or dimension of the modal space, is equal to NB+Nb. 

In general superscripts B and b indicate magnitudes associated to the main and auxiliary beam 

respectively. M, C and K are the mass, damping and stiffness square matrices of the system in 

modal coordinates, 
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Where 
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In the previous equations, m and L are, respectively, the linear mass and length of the beams; 

and ωi, ζi stand for the modal frequency and damping. 

R is the transformation matrix which transforms the modal coordinates ( )tξ  into elongations 

of the dampers D(t), ( ) ( )t tD Rξ  
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The elongations of each of the Nd dampers installed in the retrofitting system are D1, 

D2, …
dND , and x1, x2, … 

dNx  are the locations of each of the VEDs, measured along the X 

direction of the main or auxiliary beams. 

In equation (9), KD and FV contain the VED terms of the fractional model, defined in 

equations (7): 
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Finally, Q(t) is the vector of moving modal forces, defined as 

1

( ) ( )
( ) ( ( ) ( )) sin sin 0 0



    
   

 
 
 


PN

k k k k

k

k

T

B

B B

d d L Vt d N Vt d
t P H t H t

V V L L
Q  (10h) 



E. Moliner, P. Museros and M.D. Martinez-Rodrigo 

 11 

where NP is the total number of axle loads, Pk is the value of the kth load and H(t−t0) is the 

Heaviside unit function acting at time t0. V stands for the constant train speed and dk is the 

initial distance from the kth load to the beginning of the beam. 

As it can be seen, equation (9) is a non-linear coupled system of equations that is solved by 

mode superposition and numerically integrated using a predictor-corrector method. 

5. SENSITIVITY ANALYSIS 

5.1. SIMPLIFIED EQUIVALENT SYSTEM WITH TWO DEGREES OF FREEDOM 

SUBJECTED TO HARMONIC EXCITATION 

In order to identify the main governing parameters of the damping system and how they affect 

its dynamic behaviour, the planar model shown in Fig. 3 will be first analyzed under the 

action of a harmonically varying force, which is able to capture the essential features of the 

system behavior at resonance. The following assumptions will be considered in the planar 

model for this study: (i) the main and auxiliary beams are vertically aligned and their lengths 

are equal; (ii) in single-track bridges it is more likely that resonance is related to oscillations 

of the first bending mode [18]; therefore, only the first flexural mode of the main beam will 

be taken into account in the computation of the dynamic response. Also, the oscillations of 

this fundamental mode tend to create a symmetric distribution of damper forces with respect 

to the mid-span section, which excite the movement of the auxiliary beam. Consequently, the 

auxiliary beam will be analyzed in a first approach considering the sole contribution of its first 

bending mode; (iii) as for the VED, a simpler numerical model will be used, the so-called 

Kelvin model, which consists of a spring-dashpot system connected in parallel with constant-

valued model parameters. Therefore, the evolutionary behavior of VE material subjected to 

variations of temperature, strain and frequency is not considered in this first approach.  
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Assuming the previous hypotheses, the dynamic response of the retrofitted bridge at 

resonance can be approximately described by means of the two degrees of freedom (2-DOF) 

system shown in Fig. 4, expressed in modal space coordinates. 

Since only the first mode of both beams is considered, any number of VEDs located at 

different sections is equivalent to a single VED located at mid-span, with CD and KD as the 

equivalent constants of the dashpot and spring element. The expression of the equivalent 

parameters CD and KD can be written as 

 

2

1

sin ,

.

DN

E VED Di
D

iB VED

D B
D

G A x
C

h L

C
K



  
  

  







  (11) 

and the shear-strain relationship is, therefore, ( ) ( ) ( ).E Ct G t G t      (12) 

In equations (11), all the VED are considered to be identical (same material and properties) 

and symmetrically distributed between both beams with respect to the mid-span section. GE 

and η are, respectively, the Shear Storage Modulus and the Loss Factor of the VE material, 

evaluated at a constant temperature and frequency; AVED and hVED are, respectively the shear 

area and thickness of the VED layers of material; ωB is the fundamental circular frequency of 

the main beam; ND is the total number of VEDs, and xi and L are, respectively, the location of 

the ith damper measured along X axis and the length of each beam. 

The definition of the following dimensionless ratios  

 

Frequency ratio:        b B =  /    (13) 

Excitation frequency ratio:      = f /B (14) 

Mass ratio:                               = mb /mB (15) 

Supplemental damping ratio: D = CD/(B mBL) (16) 

Supplemental stiffness ratio:  D = 2KD/(B
2mBL) (17) 

 

leads to a dimensionless expression of the equations of motion of the 2-DOF system subjected 

to harmonic excitation 



E. Moliner, P. Museros and M.D. Martinez-Rodrigo 

 13 

 
2

1 0 cos( )1 0 22
20
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In the previous equations, subscripts B and b indicate magnitudes associated to the main and 

auxiliary beam respectively;  B  and b are the amplitudes of the first flexural mode in each 

beam; mB  and mb are the linear masses of the beams; and B and b, are their modal viscous 

damping ratios.  

If resonance is induced by a train of a large number of loads (as the high-speed trains), the 

maximum response will correspond to the steady-state vibration. The forced solution of 

equation (18) leads to the following expression of the forced modal amplification of the main 

beam, divided by the static deflection caused by the concentrated load P0, 
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2 2 2 2

2 2 2
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being  

 2 2 2 2 2μ( )(1 ) (1 ) 4 [ ( ) ]D D b B D D BE                 , (20a) 

   2 2 2 2(1 ) (1 )b D B D D B DF               . (20b) 

The main beam modal acceleration is also of great interest, because of its relation with ballast 

stability. In the steady-state the nondimensional amplitude of the acceleration aB is: 

 2

B Ba A . (21) 

Equation 19 shows that the response of the main beam depends on the following six 

parameters: , , , D, B and b, since D can be calculated with this alternative expression:  

 
2

.
( )

D D

B

  
 

 (22) 
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5.2. SENSITIVITY PLOTS 

In order to visualize how the governing parameters of this system affect the main beam 

dynamic amplification and modal acceleration, AB and aB, the response of this beam has been 

computed as a function of Ω for different values of the nondimensional parameters. Some of 

these results are shown in Fig. 5. Except for Fig 5f, in all plots the structural damping ratios of 

the main and auxiliary beam are 2% and 0.5% respectively. 

Figs. 5a and 5b show the acceleration aB versus Ω; the family of curves have been obtained by 

increasing solely D, which represents an increase in the area (or number) of VED, and with a 

VE material loss factor,, of  1.2. The following behaviour is observed: (i) as the damper 

constant CD increases and so does D (and also D), the maximum response decreases 

monotonically until a minimum value is reached, and increases again if the damper constant 

keeps increasing; (ii) the value of  Ω for which resonance occurs shifts sideways depending 

on the frequency ratio : if the stiffness of the auxiliary beam is higher than the one of the 

main beam, >1, the maximum peak response shifts to the right, and if <1, it shifts to the 

left. Consequently, for each value of  and  there is an optimum value of D which leads to 

the minimum value of the maximum amplification. Although not depicted here, a similar 

behavior is observed for the dynamic amplification AB. 

Figs. 5c and 5d gather the influence of the mass ratio, , in the acceleration ab, as the ratio of 

frequencies, ,  damping ratio D, and loss factor  remain constant (=1.9-0.5, D=0.12,  = 

1.2). The main beam acceleration decreases monotonically as  increases. The minimum aB 

would correspond, therefore, with an infinity value of . In that case the main beam behaves 

as if it were attached through the external damper to a fixed reference.  

In Fig 5e aB is plotted versus Ω for fixed values of , D and , showing the influence of the 

frequency ratio  in the response. The maximum aB is attained when =1, since both masses 
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tend to vibrate in phase; whereas the reductions obtained with  >1 can be higher than the 

reductions obtained with  <1.  

Finally, Fig 5f show the influence of the VE material loss factor, , in the reduction of the 

response. As  increases, the maximum peak response decreases and shifts to the left, due to 

the reduction of kD according to equation 22.  

The following conclusions can be extracted from this analysis: (i) for each value of  and  

there is an optimum D which leads to the minimum value of the maximum acceleration, as it 

was also pointed out in [19]; (ii) the amplification AB has a similar behavior, but the value of 

D which is optimal for the acceleration is slightly different from the optimal one for the 

amplification; (iii) the two resonant peaks expected for the system are not perceptible, and the 

response is similar to the one expected for a one degree of freedom system (1-DOF). This has 

been confirmed in the ranges of interest of these parameters (1.5    2.5, 0.05   0.3, 0  

B  0.05, 0  b  0.05 ); (iv) previous point (iii) could be used to estimate the total amount 

of damping that the retrofitting system can introduce in the bridge: since D would only be a 

measurement of the damping ratio introduced in the main beam in case it were linked to a 

fixed reference (floor) by means of the VEDs, an estimation of the effective damping ratio can 

be obtained by calculating the properties of an equivalent 1-DOF system which has the same 

amplification at resonance as the 2-DOF at the same excitation frequency. To this end, one 

can use the following expressions:  

 

2

1

( ) 1

2

R R

B B

DOF R

B

A A

A


 
  , 

2

4
1 2

( )

( ) 1

R

B
DOF R B R

B

A

A
  


, (23)  

being R

BA  and R the amplification of the 2-DOF system and the excitation frequency ratio at 

resonance, respectively. 
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6. DIMENSIONING PROCEDURE OF THE DAMPING SYSTEM: RETROFIT OF 

VINIVAL BRIDGE 

As an example of the application of VEDs to the retrofit of railway bridges, the dynamic 

behavior of a simply supported, single-track bridge due to the passing of High-Speed trains is 

analyzed with a view to assessing the effectiveness of the retrofitting system. 

Vinival is a 9.70 m single bay simply supported railway bridge belonging to the Spanish 

railway network. The structure is composed by four independent decks, the outermost ones 

support the sidewalks and the two inner ones carry the ballasted tracks, as shown in Fig 6.  

The only difference between the inner decks is the track eccentricity, being the less 

eccentric one (0.25 cm) the deck selected for the subsequent dynamic analyses, 

since the eccentricity is not considered in a planar model. 

The main mechanical properties of the bridge are gathered in Table 1. This bridge has been 

selected because it is expected that the vertical acceleration will exceed the upper limit given 

by Eurocode [5], for ballasted tracks (3.5m/s2) due to its short length and low mass.  

At first, the dynamic response of Vinival bridge is computed considering B-E behaviour, 

under the circulation of the HSLM-A trains from Eurocode 1 and seven European High-Speed 

trains: THALYS, TGV, ETR-Y, ICE2, EUROSTAR, VIRGIN and the Spanish TAV, in the 

range of velocities [144, 306] km/h discretized in 3.6 km/h steps. The response in terms of 

accelerations for each train and circulating velocity is obtained in the time domain by modal 

superposition, accounting for modes under 30 Hz, as per European Standards [5]. Fig. 7 

shows the acceleration envelopes in the main beam for every circulating velocity and load 

model.  
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The maximum vertical acceleration reaches 6.14 m/s2 under the circulation of the composition 

HSLM-A2 at 220 km/h, corresponding to a fourth resonance of its first bending mode.  

The optimization procedure of the damping system able to reduce the maximum vertical deck 

acceleration below 3.5m/s2, is an iterative process consisting on finding the smallest 

dimension of an auxiliary beam, which combined with the optimum VED size, keeps the 

acceleration below 3.5 m/s2 in the main beam [17]. The following subsections summarize the 

steps performed. 

6.1. ESTIMATION OF THE DAMPING REQUIREMENTS IN THE BRIDGE 

As Martínez-Rodrigo and Museros propose [19], the maximum response of the bridge under 

the circulation of the bare train composition (HSLM-A2) is recalculated by increasing the 

structural damping ratio of the bridge progressively, until the acceleration falls below 3.5m/s2. 

The results are shown in Fig. 8. 

It is well known that viscoelastic material properties are temperature dependent, and the 

energy-absorbing capacities of VEDs decrease as a result of rising ambient temperature. 

Consequently, the optimum combination of retrofitting elements at a certain ambient 

condition is not the optimal selection for a different one. As Fig. 5a indicates, if the damper 

constants are somewhat higher than the optimum values, only a slight decrease in the system 

performance is observed. This kind of behaviour gives engineers enough margin for finding a 

suitable damper-beam combination valid for a variable-temperature environment. Considering 

a range of temperatures of performance between 0 and 40ºC, the way of proceeding in order 

to find such a combination could be the selection of the optimum damping system able to 

achieve a reduction in the acceleration of 30% below the Serviceability Limit State of 3.5 

m/s2 at the average temperature of the interval (20ºC). As Fig. 8 shows, the structural 
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damping requirement to achieve this reduction is B=5.5%. Since in the retrofitted bridge the 

structural damping is estimated by means of an equivalent 1-DOF (equation 23), 1-DOF=5.5%. 

6.2. SELECTION OF THE MINIMUM SIZE OF THE AUXILIARY BEAM AND 

OPTIMUM DAMPER 

At this stage a VE material is chosen first; its properties should be optimal at 20ºC and at a 

frequency equal to the fundamental frequency of the bridge (12.8 Hz).  For this particular case, 

the VE material presented in the work of Tsai et. al. [23] has been selected, whose fractional 

model parameters are gathered in Fig. 9. This figure also shows in grey trace the hysteretic 

curve of this VED at 20ºC while a sinusoidal shear strain of realistic amplitude 0.05 at a 

frequency equal to the natural frequency of the bridge, 12.8 Hz, is induced; this evolutionary 

behavior has been predicted with the fractional derivative model. In black trace, the 

approximate equivalent hysteretic behaviour of a Kelvin model is also included, whose main 

model parameters (GE, ) at the same conditions of temperature, shear strain and frequency 

are gathered as well.  

Two pre-stressed, identical concrete I members are selected to form the auxiliary beam 

system, with Eb = 36 MPa and b = 1%. They are to be placed underneath the deck, 

symmetrically at each side of the track axis, so that if resonance of a bending mode occurs 

(most likely the fundamental one as shown in [18]), they act in phase as a single beam with 

double mass. 

The sectional properties of the selected beams only depend on the beam height, h. Therefore, 

the dimensionless ratios  and  defined in equations (13) and (15) are both dependent on h 

and could be rewritten as 
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Consequently, the six governing parameters of the 2-DOF system defined in section 5.1, , , 

, D, B and b, change to , h, D, B and b. As the bridge properties are known, and also b 

and the properties of the VED Kelvin model at 20ºC (Fig. 9), the acceleration of the main 

beam in the 2-DOF system of Fig. 4 can be computed for different retrofitting systems, each 

one defined by a pair (h, D), with h varying between 0.7 and 1.3 m, and D between 0 and 0.4. 

The results of this sensitivity analysis are gathered in Fig. 10. 

Fig 10b shows the maximum values of aB computed with the 2-DOF, with h ranging from 0.7 

to 1.3 m and D from 0 to 0.4. The dotted black trace indicates the optimum pairs h-D, which 

produce the minimum maximum acceleration at resonance. As it can be seen, once the size h 

of the auxiliary beam is fixed, the acceleration of the system decreases while D is increased. 

But when the dotted line is reached (the optimum D for the selected h), the increase of D 

produces a progressive increase of the response of the system. Also the damping ratio of the 

equivalent 1-DOF system defined by equations (23) is computed at each point of the dotted 

black trace. As stated before, this is referred to as effective damping ratio. Therefore, the 

effective damping ratio that the optimum combination h-D introduces in the main beam is 

obtained and plotted in Figure 10a. Using Figure 10a a value h=1.07 m is obtained for the 

auxiliary beam to achieve an effective damping ratio equal to 5.5% at 20ºC. Finally, with the 

help of Fig. 10b, the optimum value of D associated to the selected beam height, h = 1.07 m, 

is selected (D = 8.8%). Once the size of the auxiliary beam and the supplemental damping 

ratio is chosen, the number of VEDs, dimensions, and locations can be selected so that the 

value of D = 8.8% is reached.  
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6.3. OPTIMIZATION OF THE DAMPING SYSTEM IN THE TEMPERATURE 

RANGE 

The previous results give an approximate estimation of the dimensions required for the 

retrofitting system at 20ºC. Subsequently, the dynamic behavior of the retrofitted bridge needs 

to be computed again by using the fractional VED model, under the passage of the same train 

compositions, and at different temperatures within the range of interest. Due to the coupling 

of the dynamic equations through the damping and stiffness matrices (equation 9), the 

accuracy of the modal responses increases with the order of the system of equations. A 

sensitivity analysis of the number of modes required is performed first ensuring the 

convergence of the modal responses. Fig. 11 presents the main characteristics selected for the 

damping system (obtained from the dimensioning procedure explained in the previous 

section). Details of how the beams and dampers are placed and connected to the deck would 

depend on the precise typology of the bridge. 

In the retrofitted case four bending modes of the main beam are included in the problem 

formulation in modal space, along with the first two bending modes of the auxiliary concrete 

beams, which are merged into a single auxiliary beam in the planar model of Fig. 3. 

Subsequently, the response of the main beam is computed from the sole contribution of its 

first bending mode because the higher ones have frequencies above 30 Hz. In Fig. 12 the 

envelope of maximum acceleration for all velocities under the circulation of the most 

unfavourable train composition HSLM-A2 is presented. Different temperatures within the 

range have been considered. As it can be seen, at 0ºC the maximum acceleration reaches 4.06 

m/s2; in this case the performance of the system is less efficient, since the damper dimensions 

are somewhat higher than the optimum values. Despite the aforementioned drawback, a 

reduction of 33.9 % in maximum acceleration is attained. At 20ºC the maximum acceleration 
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in the main beam attains 2.84 m/s2, and a value of 3.6 m/s2 is reached at 40ºC. The controlling 

effect of the retrofitting system is apparent, as well as the influence of the ambient 

temperature in its energy absorbing capacities. In a view to achieve a better performance in a 

wide range of temperatures, the damping system can be redimensioned following an iterative 

process where the height of the auxiliary beam h is increased until the maximum accelerations 

at 0ºC and 40ºC are kept below the desired limits. 

Fig. 13a shows the maximum envelopes of accelerations attained in the retrofitted bridge 

under the passage of HSLM-A2 train model, with an auxiliary beam size h=1.2 m (close to 

the original one, 1.07 m), and with the VEDs dimensions and locations outlined in Fig. 11. In 

this case, the acceleration level at 40ºC is kept below 3.5m/s2, and at 0ºC the maximum 

acceleration attains 3.85m/s2, which corresponds to a reduction of 37.2 %. Figs. 13b, (c) and 

(d) show the acceleration envelopes of the retrofitted bridge at different temperatures and 

shear areas of VED. As it can be observed, the optimal dimension of VED area at 0ºC (0.02 

m2) that leads to the minimum envelope shown in red line, is not optimal at 20ºC nor at 40ºC. 

A similar behaviour of the damping system can be observed at 40ºC (Fig. 13c), where the 

optimum VED shear area and the selected value for the retrofitting system are not coincident. 

The best performance of the damping system is attained at 20ºC, since the selected VEDs area 

(0.12 m2) is close to the optimum value (0.14 m2). 

In what concerns the economic feasibility, the cost of the proposed retrofitting solution was 

compared to the cost of demolishing and installing a new deck (classical solution) in this 

particular example, concluding that the proposed damping system is economically feasible.  
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7. SUMMARY AND CONCLUSIONS  

In the present study the authors present a retrofitting system based on viscoelastic dampers 

(VEDs) which is capable of reducing the inadmissible accelerations of existing simply 

supported railway bridges under the circulation of modern high-speed traffic.  

The VEDs are modelled using an advanced non-linear formulation based on fractional 

derivatives, which was previously proposed and used by Tsai and Lee [23] to study the 

energy-absorbing capacities in structures during earthquakes. A specific predictor-corrector 

algorithm has been developed in order to integrate numerically the equations of motion of the 

bridge deck, modelled as a simply-supported Euler-Bernoulli beam, along with the 

corresponding retrofitting system. 

As an example of the application of VEDs to the retrofit of railway bridges, the dynamic 

behavior of a simply supported, single-track bridge due to the passing of high-speed trains is  

numerically evaluated with a view to assessing the effectiveness of the retrofitting system. 

Firstly, a sensitivity analysis of this system has led to a dimensioning procedure of the 

damping system, able to estimate the main dimensions of the auxiliary beams and VEDs in a 

first approach. Subsequently, an analysis is carried out with a view to discovering whether the 

retrofitting system keeps the maximum accelerations below the Serviceability limits for every 

temperature in the range of interest. If this is not accomplished, the damping system is 

redimensioned following an iterative process until the maximum accelerations satisfy the 

Serviceability Limits. The numerical results show that the maximum vertical acceleration can 

be drastically decreased by using a proper combination of auxiliary beams and VEDs in an 

outdoor environment. In this example, only one VED per beam is proposed, but the dampers 

could also be distributed along the length of the beams.  
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Finally, it should be pointed out that the proposed retrofit solution can be feasible from an 

economical point of view. 
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Fig. 1. Viscoelastic damper 

 

 

Fig. 2. Retrofit configuration 

 

 

Fig. 3. Bidimensional model of the retrofitted bridge 
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Fig. 4. Representation of the first flexural modes of bridge and auxiliary beam in modal space 

coordinates. Equivalent 2-DOF system 

 

 

Fig. 5. Main beam acceleration aB versus Ω  for different values of , , D and  
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Fig. 6. Cross-section of Vinival bridge. Units of the figure (m) 

 

 

Fig. 7. Maximum vertical acceleration at mid span 

 

 

Fig. 8. Maximum vertical acceleration at mid span by increasing modal damping ratio B 
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Fig. 9. VED model parameters and hysteretic behaviour while strain is 0.05·sin (ωB t), at 20ºC 

 

 

Fig. 10. Selection of the minimum pair h-D from the structural damping requirements  

 

 

Fig. 11. Retrofitting elements 
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Fig. 12. Maximum retrofitted vertical acceleration at mid span. h= 1.07 m 

 

 

Fig. 13. Maximum retrofitted vertical acceleration at mid span. h= 1.2 m 
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Length, L (m) 9.70 

Mass per unit length, mB (kg/m) 9754 

Inertia, IZB (m4) 0.159 

Young modulus, EB (Pa) 3.6 1010 

Natural frequency, f0B (Hz) 12.8 

Modal damping ratio, B (%) 2 

Table 1.  Mechanical properties of Vinival bridge 

 

 


