3,715 research outputs found

    Not a galaxy: IRAS 04186+5143, a new young stellar cluster in the outer Galaxy

    Get PDF
    We report the discovery of a new young stellar cluster in the outer Galaxy located at the position of an IRAS PSC source that has been previously mis-identified as an external galaxy. The cluster is seen in our near-infrared imaging towards IRAS 04186+5143 and in archive Spitzer images confirming the young stellar nature of the sources detected. There is also evidence of sub-clustering seen in the spatial distributions of young stars and of gas and dust. Near- and mid-infrared photometry indicates that the stars exhibit colours compatible with reddening by interstellar and circumstellar dust and are likely to be low- and intermediate-mass YSOs with a large proportion of Class I YSOs. Ammonia and CO lines were detected, with the CO emission well centred near the position of the richest part of the cluster. The velocity of the CO and NH3_3 lines indicates that the gas is Galactic and located at a distance of about 5.5 kpc, in the outer Galaxy. Herschel data of this region characterise the dust environment of this molecular cloud core where the young cluster is embedded. We derive masses, luminosities and temperatures of the molecular clumps where the young stars reside and discuss their evolutionary stages.Comment: 14 pages, 15 figure

    Connecting scaling with short-range correlations

    Get PDF
    We reexamine several issues related to the physics of scaling in electron scattering from nuclei. A basic model is presented in which an assumed form for the momentum distribution having both long- and short-range contributions is incorporated in the single-particle Green function. From this one can obtain saturation of nuclear matter for an NN interaction with medium-range attraction and short-range repulsion, and can obtain the density-density polarization propagator and hence the electromagnetic response and scaling function. For the latter, the shape of the scaling function and how it approaches scaling as a function of momentum transfer are both explored.Comment: 24 pages, 15 figures. A reference has been corrected and update

    Undecidability of future timeline-based planning over dense temporal domains

    Get PDF
    The present work focuses on timeline-based planning over dense temporal domains. In automated planning, the temporal domain is commonly assumed to be discrete, the dense case being dealt with by resorting to some form of discretization. In the last years, the planning problem over dense temporal domains has been finally addressed both in the timeline-based setting and, very recently, in the action-based one. Dense timeline-based planning, in its full generality, has been shown to be undecidable. Decidability has been recovered by imposing suitable syntactic and/or semantic restrictions (the complexity of decidable fragments varies a lot, spanning from non-primitive recursive hardness to NP-completeness, passing through EXPSPACE- and PSPACE-completeness). In this paper, we proved that restricting to the future fragment is not enough to get decidability

    C3N4 for CO2 photoreduction: catalyst performance and stability in batch and continuous reactor

    Get PDF
    In this study, various C3N4 samples were prepared and characterized. CO2 photoreduction was carried out by using C3N4 as powder and coated on glass support in a batch reactor or embedded in a Nafion membrane in a continuous reacto

    Model Checking Timeline-based Systems over Dense Temporal Domains?

    Get PDF
    In this paper, we introduce an automaton-theoretic approach to model checking linear time properties of timeline-based systems over dense temporal domains. The system under consideration is specified by means of (a decidable fragment of) timeline structures, timelines for short, which are a formal setting proposed in the literature to model planning problems in a declarative way. Timelines provide an interval-based description of the behavior of the system, instead of a more conventional point-based one. The relevant system properties are expressed by formulas of the logic MITL (a well-known timed extension of LTL) to be checked against timelines. In the paper, we prove that the model checking problem for MITL formulas (resp., its fragment MITL(0,∞)) over timelines is EXPSPACE-complete (resp., PSPACE-complete)

    Spontaneous thermal runaway as an ultimate failure mechanism of materials

    Full text link
    The first theoretical estimate of the shear strength of a perfect crystal was given by Frenkel [Z. Phys. 37, 572 (1926)]. He assumed that as slip occurred, two rigid atomic rows in the crystal would move over each other along a slip plane. Based on this simple model, Frenkel derived the ultimate shear strength to be about one tenth of the shear modulus. Here we present a theoretical study showing that catastrophic material failure may occur below Frenkel's ultimate limit as a result of thermal runaway. We demonstrate that the condition for thermal runaway to occur is controlled by only two dimensionless variables and, based on the thermal runaway failure mechanism, we calculate the maximum shear strength σc\sigma_c of viscoelastic materials. Moreover, during the thermal runaway process, the magnitude of strain and temperature progressively localize in space producing a narrow region of highly deformed material, i.e. a shear band. We then demonstrate the relevance of this new concept for material failure known to occur at scales ranging from nanometers to kilometers.Comment: 4 pages, 3 figures. Eq. (6) and Fig. 2a corrected; added references; improved quality of figure
    corecore