The first theoretical estimate of the shear strength of a perfect crystal was
given by Frenkel [Z. Phys. 37, 572 (1926)]. He assumed that as slip occurred,
two rigid atomic rows in the crystal would move over each other along a slip
plane. Based on this simple model, Frenkel derived the ultimate shear strength
to be about one tenth of the shear modulus. Here we present a theoretical study
showing that catastrophic material failure may occur below Frenkel's ultimate
limit as a result of thermal runaway. We demonstrate that the condition for
thermal runaway to occur is controlled by only two dimensionless variables and,
based on the thermal runaway failure mechanism, we calculate the maximum shear
strength σc of viscoelastic materials. Moreover, during the thermal
runaway process, the magnitude of strain and temperature progressively localize
in space producing a narrow region of highly deformed material, i.e. a shear
band. We then demonstrate the relevance of this new concept for material
failure known to occur at scales ranging from nanometers to kilometers.Comment: 4 pages, 3 figures. Eq. (6) and Fig. 2a corrected; added references;
improved quality of figure