19,597 research outputs found

    New DNLS Equations for Anharmonic Vibrational Impurities

    Full text link
    We examine some new DNLS-like equations that arise when considering strongly-coupled electron-vibration systems, where the local oscillator potential is anharmonic. In particular, we focus on a single, rather general nonlinear vibrational impurity and determine its bound state(s) and its dynamical selftrapping properties.Comment: 16 pages, 5 figure

    Power Switching in Hybrid Coherent Couplers

    Get PDF
    We report on a theoretical and numerical investigation of the switching of power in new hybrid models of nonlinear coherent couplers consisting of optical slab waveguides with various orders of nonlinearity. The first model consists of two guides with second-order instead of the usual third-order susceptibilities as typified by the Jensen coupler. This second-order system is shown to have a power self-trapping transition at a critical power greater than the third-order susceptibility coupler. Next, we consider a mixed coupler composed of a second-order guide coupled to a third-order guide and show that, although it does not display a rigorous self-trapping transition, for a particular choice of parameters it does show a fairly abrupt trapping of power at a lower power than in the third-order coupler. By coupling this mixed nonlinear pair to a third, purely linear guide, the power trapping can be brought to even lower levels and in this way a satisfactory switching profile can be achieved at less than one sixth the input power needed in the Jensen coupler.Comment: Latex source,17 pages, 5 figure

    Set-based approach to passenger aircraft family design

    Get PDF
    Presented is a method for the design of passenger aircraft families. Existing point-based methods found in the literature employ sequential approaches in which a single design solution is selected early and is then iteratively modified until all requirements are satisfied. The challenge with such approaches is that the design is driven toward a solution that, although promising to the optimizer, may be infeasible due to factors not considered by the models. The proposed method generates multiple solutions at the outset. Then, the infeasible solutions are discarded gradually through constraint satisfaction and set intersection. The method has been evaluated through a notional example of a three-member aircraft family design. The conclusion is that point-based design is still seen as preferable for incremental (conventional) designs based on a wealth of validated empirical methods, whereas the proposed approach, although resource-intensive, is seen as more suited to innovative designs

    From Disordered Crystal to Glass: Exact Theory

    Full text link
    We calculate thermodynamic properties of a disordered model insulator, starting from the ideal simple-cubic lattice (g=0g = 0) and increasing the disorder parameter gg to ≫1/2\gg 1/2. As in earlier Einstein- and Debye- approximations, there is a phase transition at gc=1/2g_{c} = 1/2. For g<gcg<g_{c} the low-T heat-capacity C∼T3C \sim T^{3} whereas for g>gcg>g_{c}, C∼TC \sim T. The van Hove singularities disappear at {\em any finite gg}. For g>1/2g>1/2 we discover novel {\em fixed points} in the self-energy and spectral density of this model glass.Comment: Submitted to Phys. Rev. Lett., 8 pages, 4 figure

    Coulomb blockade without potential barriers

    Full text link
    We study transport through a strongly correlated quantum dot and show that Coulomb blockade can appear even in the presence of perfect contacts. This conclusion arises from numerical calculations of the conductance for a microscopic model of spinless fermions in an interacting chain connected to each lead via a completely open channel. The dependence of the conductance on the gate voltage shows well defined Coulomb blockade peaks which are sharpened as the interaction strength is increased. Our numerics is based on the embedding method and the DMRG algorithm. We explain the emergence of Coulomb blockade with perfect contacts by a reduction of the effective coupling matrix elements between many-body states corresponding to successive particle numbers in the interacting region. A perturbative approach, valid in the strong interaction limit, yields an analytic expression for the interaction-induced suppression of the conductance in the Coulomb blockade regime.Comment: Fixed problems with eps figure

    The role of slip transfer at grain boundaries in the propagation of microstructurally short fatigue cracks in Ni-based superalloys

    Full text link
    Crack initiation and propagation under high-cycle fatigue conditions have been investigated for a polycrystalline Ni-based superalloy by in-situ synchrotron assisted diffraction and phase contrast tomography. The cracks nucleated along the longest coherent twin boundaries pre-existing on the specimen surface, that were well oriented for slip and that presented a large elastic incompatibility across them. Moreover, the propagation of microstructurally short cracks was found to be determined by the easy slip transfer paths across the pre-existing grain boundaries. This information can only be obtained by characterization techniques like the ones presented here that provide the full set of 3D microstructural information
    • …
    corecore