52 research outputs found

    A dual action of XTcf-3 in body axis formation

    Get PDF
    The role of the TCF family of transcriptional regulators in primary axis formation is addressed by studying the mechanisms of action of XTcf-3 in Xenophus laevis embryos. The early events of primary axis induction involve activation through the WNT signaling pathway. As a result of activation of the pathway the cytoplasmic level of ß-catenin increases at the future dorsal side of the early cleavage stage embryo. Around the 16-32 cell stage, ß-catenin becomes apparent in the nuclei. The presence of nuclear ß-catenin causes several hours later the activation of specific target genes, like e.g. XSiamois. Since ß-catenin does not contain a DNA binding region, DNA binding proteins must mediate this transactivation. Ectopic expression of ß-catenin causes activation of dorsal genes and results in the induction and differentiation of a secondary axis. (See introduction). Three different homologs of the Tcf/Lef family of transcription factors have been cloned in Xenopus laevis, XTcf-3, XLef-1 and XTcf-4 (Chapter 3). Only transcripts of XTcf-3 are present maternally and therefore likely to be involved in axis specification. As described in chapters 2 and 4, during axis induction in Xenopus laevis embryos, XTcf-3 can act both as an activator as well as a repressor of transcription

    XTcf-3 Transcription Factor Mediates β-Catenin-Induced Axis Formation in Xenopus Embryos

    Get PDF
    AbstractXTcf-3 is a maternally expressed Xenopus homolog of the mammalian HMG box factors Tcf-1 and Lef-1. The N-terminus of XTcf-3 binds to β-catenin. Microinjection of XTcf-3 mRNA in embryos results in nuclear translocation of β-catenin. The β-catenin–XTcf-3 complex activates transcription in a transient reporter gene assay, while XTcf-3 by itself is silent. N-terminal deletion of XTcf-3 (ΔN) abrogates the interaction with β-catenin, as well as the consequent transcription activation. This dominant-negative ΔN mutant suppresses the induction of axis duplication by microinjected β-catenin. It also suppresses endogenous axis specification upon injection into the dorsal blastomeres of a 4-cell-stage embryo. We propose that signaling by β-catenin involves complex formation with XTcf-3, followed by nuclear translocation and activation of specific XTcf-3 target genes

    Integrative analysis of neuroblastoma by single-cell RNA sequencing identifies the NECTIN2-TIGIT axis as a target for immunotherapy

    Get PDF
    Pediatric patients with high-risk neuroblastoma have poor survival rates and urgently need more effective treatment options with less side effects. As novel and improved immunotherapies may fill this need, we dissected the immunoregulatory interactions in neuroblastoma by single-cell RNA-sequencing of 25 tumors (10 pre- and 15 post-chemotherapy, including 5 pairs) to identify strategies for optimizing immunotherapy efficacy. Neuroblastomas were infiltrated by NK, T and B cells, and immunosuppressive myeloid populations. NK cells showed reduced cytotoxicity and T cells had a dysfunctional profile. Interaction analysis revealed a vast immunoregulatory network and identified NECTIN2-TIGIT as a crucial immune checkpoint. Combined blockade of TIGIT and PD-L1 significantly reduced neuroblastoma growth, with complete responses in vivo. Moreover, addition of TIGIT blockade to standard relapse treatment in a chemotherapy-resistant Th-ALKF1174L/MYCN 129/SvJ syngeneic model significantly improved survival. Concluding, our integrative analysis of neuroblastoma’s vast immunoregulatory network provides novel targets and a rationale for immunotherapeutic combination strategies

    Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans

    Get PDF
    Animal experiments have shown that nonhuman primates, cats, ferrets, hamsters, rabbits, and bats can be infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition, SARS-CoV-2 RNA has been detected in felids, mink, and dogs in the field. Here, we describe an in-depth investigation using whole-genome sequencing of outbreaks on 16 mink farms and the humans living or working on these farms. We conclude that the virus was initially introduced by humans and has since evolved, most likely reflecting widespread circulation among mink in the beginning of the infection period, several weeks before detection. Despite enhanced biosecurity, early warning surveillance, and immediate culling of animals in affected farms, transmission occurred between mink farms in three large transmission clusters with unknown modes of transmission. Of the tested mink farm residents, employees, and/or individuals with whom they had been in contact, 68% had evidence of SARS-CoV-2 infection. Individuals for which whole genomes were available were shown to have been infected with strains with an animal sequence signature, providing evidence of animal-to-human transmission of SARS-CoV-2 within mink farms

    Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’

    Get PDF
    iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival

    Implementation of paediatric precision oncology into clinical practice: The Individualized Therapies for Children with cancer program ‘iTHER’

    Get PDF
    iTHER is a Dutch prospective national precision oncology program aiming to define tumour molecular profiles in children and adolescents with primary very high-risk, relapsed, or refractory paediatric tumours. Between April 2017 and April 2021, 302 samples from 253 patients were included. Comprehensive molecular profiling including low-coverage whole genome sequencing (lcWGS), whole exome sequencing (WES), RNA sequencing (RNA-seq), Affymetrix, and/or 850k methylation profiling was successfully performed for 226 samples with at least 20% tumour content. Germline pathogenic variants were identified in 16% of patients (35/219), of which 22 variants were judged causative for a cancer predisposition syndrome. At least one somatic alteration was detected in 204 (90.3%), and 185 (81.9%) were considered druggable, with clinical priority very high (6.1%), high (21.3%), moderate (26.0%), intermediate (36.1%), and borderline (10.5%) priority. iTHER led to revision or refinement of diagnosis in 8 patients (3.5%). Temporal heterogeneity was observed in paired samples of 15 patients, indicating the value of sequential analyses. Of 137 patients with follow-up beyond twelve months, 21 molecularly matched treatments were applied in 19 patients (13.9%), with clinical benefit in few. Most relevant barriers to not applying targeted therapies included poor performance status, as well as limited access to drugs within clinical trial. iTHER demonstrates the feasibility of comprehensive molecular profiling across all ages, tumour types and stages in paediatric cancers, informing of diagnostic, prognostic, and targetable alterations as well as reportable germline variants. Therefore, WES and RNA-seq is nowadays standard clinical care at the Princess Máxima Center for all children with cancer, including patients at primary diagnosis. Improved access to innovative treatments within biology-driven combination trials is required to ultimately improve survival

    The immune landscape of neuroblastoma: Challenges and opportunities for novel therapeutic strategies in pediatric oncology

    Get PDF
    Immunotherapy holds great promise for the treatment of pediatric cancers. In neuroblastoma, the recent implementation of anti-GD2 antibody Dinutuximab into the standard of care has improved patient outcomes substantially. However, 5-year survival rates are still below 50% in patients with high-risk neuroblastoma, which has sparked investigations into novel immunotherapeutic approaches. T cell-engaging therapies such as immune checkpoint blockade, antibody-mediated therapy and adoptive T cell therapy have proven remarkably successful in a range of adult cancers but still meet challenges in pediatric oncology. In neuroblastoma, their limited success may be due to several factors. Neuroblastoma displays low immunogenicity due to its low mutational load and lack of MHC-I expression. Tumour infiltration by T and NK cells is especially low in high-risk neuroblastoma and is prognostic for survival. Only a small fraction of tumour-infiltrating lymphocytes shows tumour reactivity. Moreover, neuroblastoma tumours employ a variety of immune evasion strategies, including expression of immune checkpoint molecules, induction of immunosuppressive myeloid and stromal cells, as well as secretion of immunoregulatory mediators, which reduce infiltration and reactivity of immune cells. Overcoming these challenges will be key to the successful implementation of novel immunotherapeutic interventions. Combining different immunotherapies, as well as personalised strategies, may be promising approaches. We will discuss the composition, function and prognostic value of tumour-infiltrating lymphocytes (TIL) in neuroblastoma, reflect on challenges for immunotherapy, including a lack of TIL reactivity and tumour immune evasion strategies, and highlight opportunities for immunotherapy and future perspectives with regard to state-of-the-art developments in the tumour immunology space

    The immune landscape of neuroblastoma: Challenges and opportunities for novel therapeutic strategies in pediatric oncology

    No full text
    Immunotherapy holds great promise for the treatment of pediatric cancers. In neuroblastoma, the recent implementation of anti-GD2 antibody Dinutuximab into the standard of care has improved patient outcomes substantially. However, 5-year survival rates are still below 50% in patients with high-risk neuroblastoma, which has sparked investigations into novel immunotherapeutic approaches. T cell-engaging therapies such as immune checkpoint blockade, antibody-mediated therapy and adoptive T cell therapy have proven remarkably successful in a range of adult cancers but still meet challenges in pediatric oncology. In neuroblastoma, their limited success may be due to several factors. Neuroblastoma displays low immunogenicity due to its low mutational load and lack of MHC-I expression. Tumour infiltration by T and NK cells is especially low in high-risk neuroblastoma and is prognostic for survival. Only a small fraction of tumour-infiltrating lymphocytes shows tumour reactivity. Moreover, neuroblastoma tumours employ a variety of immune evasion strategies, including expression of immune checkpoint molecules, induction of immunosuppressive myeloid and stromal cells, as well as secretion of immunoregulatory mediators, which reduce infiltration and reactivity of immune cells. Overcoming these challenges will be key to the successful implementation of novel immunotherapeutic interventions. Combining different immunotherapies, as well as personalised strategies, may be promising approaches. We will discuss the composition, function and prognostic value of tumour-infiltrating lymphocytes (TIL) in neuroblastoma, reflect on challenges for immunotherapy, including a lack of TIL reactivity and tumour immune evasion strategies, and highlight opportunities for immunotherapy and future perspectives with regard to state-of-the-art developments in the tumour immunology space

    Two Members of the Tcf Family Implicated in Wnt/β-Catenin Signaling during Embryogenesis in the Mouse

    No full text
    Tcf transcription factors interact with β-catenin and Armadillo to mediate Wnt/Wingless signaling. We now report the characterization of genes encoding two murine members of the Tcf family, mTcf-3 and mTcf-4. mTcf-3 mRNA is ubiquitously present in embryonic day 6.5 (E6.5) mouse embryos but gradually disappears over the next 3 to 4 days. mTcf-4 expression occurs first at E10.5 and is restricted to di- and mesencephalon and the intestinal epithelium during embryogenesis. The mTcf-3 and mTcf-4 proteins bind a canonical Tcf DNA motif and can complex with the transcriptional coactivator β-catenin. Overexpression of Wnt-1 in a mammary epithelial cell line leads to the formation of a nuclear complex between β-catenin and Tcf proteins and to Tcf reporter gene transcription. These data demonstrate a direct link between Wnt stimulation and β-catenin/Tcf transcriptional activation and imply a role for mTcf-3 and -4 in early Wnt-driven developmental decisions in the mouse embryo
    corecore