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Abstract Immunotherapy holds great promise for the treatment of pediatric cancers. In neu-

roblastoma, the recent implementation of anti-GD2 antibody Dinutuximab into the standard

of care has improved patient outcomes substantially. However, 5-year survival rates are still

below 50% in patients with high-risk neuroblastoma, which has sparked investigations into

novel immunotherapeutic approaches. T cell-engaging therapies such as immune checkpoint

blockade, antibody-mediated therapy and adoptive T cell therapy have proven remarkably

successful in a range of adult cancers but still meet challenges in pediatric oncology. In neu-

roblastoma, their limited success may be due to several factors. Neuroblastoma displays low

immunogenicity due to its low mutational load and lack of MHC-I expression. Tumour infil-

tration by T and NK cells is especially low in high-risk neuroblastoma and is prognostic for

survival. Only a small fraction of tumour-infiltrating lymphocytes shows tumour reactivity.

Moreover, neuroblastoma tumours employ a variety of immune evasion strategies, including

expression of immune checkpoint molecules, induction of immunosuppressive myeloid and

stromal cells, as well as secretion of immunoregulatory mediators, which reduce infiltration

and reactivity of immune cells. Overcoming these challenges will be key to the successful im-

plementation of novel immunotherapeutic interventions. Combining different immunother-

apies, as well as personalised strategies, may be promising approaches. We will discuss the

composition, function and prognostic value of tumour-infiltrating lymphocytes (TIL) in neu-

roblastoma, reflect on challenges for immunotherapy, including a lack of TIL reactivity and

tumour immune evasion strategies, and highlight opportunities for immunotherapy and future
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perspectives with regard to state-of-the-art developments in the tumour immunology space.

ª 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Immunotherapy has recently led to a leap in survival

rates in a variety of adult cancers [1]. State of the art

immune interventions include immune checkpoint inhi-

bition (ICI), antibody-mediated therapy and adoptive T

cell therapy. Although immunotherapy may also hold

great promise for pediatric oncology, it is still in the
early stages of development for pediatric solid cancers.

The increased survival of patients with high-risk neu-

roblastoma following the implementation of anti-GD2

therapy into standard care exemplifies the potential of

immunotherapy in pediatric oncology [2].

Neuroblastoma is one of the most common extra-

cranial solid tumours in children, arising from neural

crest progenitor cells in the sympathetic nervous system.
It presents with tumour masses in the adrenal glands

and/or sympathetic ganglia. The prognosis of neuro-

blastoma depends heavily on the disease stage [3,4].

Patients are stratified into risk groups based on molec-

ular factors and disease presentation, including patient

age, tumour histology, localised versus metastatic dis-

ease, and genomic alterations, among which MYCN

amplification is an important driver of poor prognosis
[4,5]. Whereas patients with low-risk (LR) disease have a

favourable prognosis with >90% survival, the 5-year

survival rate of patients with high-risk (HR) disease is

still below 50% [3]. The current standard of care for

patients with HR-neuroblastoma consists of an intense

treatment protocol with induction chemotherapy, sur-

gical tumour resection, consolidation with single or

tandem high dose chemotherapy followed by autologous
stem cell transplantation, radiotherapy and immuno-

therapy with the anti-GD2 antibody Dinutuximab

(which is currently combined with isotretinoin and in

some regions with GM-CSF, but not anymore with IL-

2) [6]. Dinutuximab-dependent cytotoxicity is thought to

be mainly mediated by neutrophils and natural killer

(NK) cells [7,8]. The introduction of immunotherapy

into the standard treatment regimen has significantly
improved survival rates [6,9e13]. However, the current

prognosis with less than 50% survival in patients with

HR-neuroblastoma remains dismal, nonetheless, with

disease relapses being an important factor.

The encouraging results of Dinutuximab, but still

unsatisfactory prognosis, have sparked investigations

into novel immunotherapeutic approaches, which may

provide immunological memory against the tumour to
prevent disease relapses. Immune interventions that

have demonstrated great success in a range of adult
cancers, such as ICI and adoptive T cell therapy, how-

ever, meet challenges in pediatric oncology, resulting in
limited effectivity [2,14]. First, pediatric solid cancers in

general (and neuroblastoma in specific) have low

immunogenicity, which can be attributed to a low

mutational burden and consequently low neoepitope

expression, as well as low expression of MHC-I [15e17].

This low immunogenicity results in a lack of tumour

infiltration by lymphocytes and a suboptimal anti-

tumour reactivity of the few tumour-infiltrating lym-
phocytes (TIL) present. Furthermore, tumour immune

evasion strategies that are active both in the tumour

microenvironment (TME) and systemically can addi-

tionally hamper lymphocyte infiltration and activity

[18]. These factors, taken together, impede effective

engagement of cytotoxic killer cells such as NK cells and

cytotoxic T lymphocytes (CTL) during immunotherapy

[1,2]. Successful implementation of novel immunother-
apeutic interventions in pediatric oncology will, there-

fore, likely require a different or more extensive

approach than in adults.

To provide a perspective for the development of

novel immunotherapeutic strategies in neuroblastoma,

we will 1) discuss the composition, function and prog-

nostic value of TIL in neuroblastoma, 2) reflect on

challenges for immunotherapy, including a lack of TIL
reactivity and tumour immune evasion strategies, and 3)

highlight opportunities for immunotherapy and future

perspectives with regard to state-of-the-art de-

velopments in the tumour immunology space.

2. Tumour-infiltrating lymphocytes in neuroblastoma

2.1. TIL composition in human neuroblastoma

Although neuroblastoma has been considered to be an

immunologically ‘cold’ tumour [19,20], multiple studies

have demonstrated the presence of TIL, including T cells
and NK cells, in human neuroblastoma tumours (Table

1 and Fig. 1) [21e42]. Also, invariant natural killer T

cells (iNKT), NKT cells and gd T cells have been

identified [34e36,43], whereas B cells are rare and

mostly undetectable [21,22,41]. The number and

composition of TIL vary significantly between individ-

ual patients and tumour samples, with TIL detected in

28%e100% of tumours by immunohistochemistry
(IHC) [24e27]. CD3þ T cells make up ~5% of total cells

in the tumour microenvironment (TME) [22,23], consist

of both CD4þ and CD8þ T cells, and are more

frequently detected in septa than tumour nests [28e30].

http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1
TIL presence and distribution in human neuroblastoma. Disc Z discovery cohort, FC Z flow cytometry, ganglioNBL Z ganglioneuroblastoma,

HR Z high-risk, IF Z immunofluorescence, IHC Z immunohistochemistry, IR Z intermediate risk, LR Z low-risk, MYCN-NA Z MYCN

non amplified, NBL Z neuroblastoma, NHR Z non high-risk, NK cells Z natural killer cells, (i)NKT cells Z (invariant) natural killer T cells,

Pts Z patients, (RT-q)PCR Z (reverse transcriptase-quantitative) Polymerase Chain Reaction, seq Z sequencing, TCR Z T cell receptor,

TIL Z tumour infiltrating lymphocytes, Val Z validation cohort, gd T Z gammadelta T cells.

Ref Patients/samples/

material

Stage Method Lymphocytes T cells Other lymphocytes

CD3 CD4, CD8 and

Tregs

NK, NKT

and gd T cells

B cells

[21] 9/9. Primary

tumour

4 FC of ficoll-isolated

cell fraction after

digestion

10e80% (mean

50%) of total

CD4/CD8 ratio

0.5e5

NK: 1e30% <2%

[22] 26/26. Primary

tumour

3, 4 FC of total single-cell

suspension after

digestion

5% of viable cells

[23] 8/8. Primary

tumour versus

blood

1, 2, 3, 4 FC of total single-cell

suspension after

digestion

0.4e17.8% (mean

4.5%) in TIL

CD4/CD8 ratio:

TIL 0.3e1.7

(mean 0.8) versus

PBL 0.2e2.7

(mean 1.5)

[35] 24/30. Primary

tumour

Unknown FC of ex vivo

expanded TIL

Present CD4 and CD8

present

NKT present.

gd T present.

[24] 53/53. Primary

tumour

1, 2, 3, 4 IHC In 28% of pts

[25] 23/23. Primary

tumour

N/A IHC In 96% of pts

[22] 26/26. Primary

tumour

3, 4 IHC CD3, CD4 and

CD8

Organised

lymphoid tissue

and B-cell follicles

at edges of

tumour nests

CD3, including

CD4 and CD8:

88% of

lymphocytes in

peritumoural

stroma

CD4 and CD8

minimal/

undetectable in

nests

NK rare/

undetectable

rare/

undetectable

[33] 15/15. Primary

tumour

LR, IR,

HR

IHC CD45 and CD4 Present CD4 present

[27] 111 untreated and 8

treated. Primary

tumour

1, 2, 3, 4/

LR, MR,

HR

IHC H&E In 83% of NBL

and 89% of

ganglioNBL

[29] 3 HLA*A201

patients. NY-ESO-

1þ tumours from

metastatic relapse

4 IHC Present in nests and

septa

[26] 21/21. Primary

tumour

N/A IHC CD3 in 100% of samples

[30] 84/84. Primary

tumour

1, 2, 3, 4 IHC CD3, CD4 and

CD8

~1.5x more

frequent in septa

than nests

CD4 and CD8 ~2x

more frequent in

septa than nests

[31] 55/55. Primary

tumour and

metastasis

HR,

NHR

IHC CD8 CD8 present in

~50e100% of HR

and NHR

tumours

[28] 36/36. Resection

tumour

IHC CD8 CD8 present in

septa, nests and

perivascular

[38] 80/80 1, 2, 3, 4,

4S

IHC CD8 CD8 present

[36] 129/129 MYCN-

NA. Primary

tumour

4 IF NKT present

[40] 8/8. Primary

tumour versus

blood

2, 3, 4 PCR of TCR Polyclonal TCR,

diverse Va and Vb.

Vb2 clonality in

tumours.

[43] 98/98. Primary

tumour

4 RT-qPCR Va24-

Ja18, Flow

cytometry

iNKT in 53%

of samples

(continued on next page)
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Table 1 (continued )

Ref Patients/samples/

material

Stage Method Lymphocytes T cells Other lymphocytes

CD3 CD4, CD8 and

Tregs

NK, NKT

and gd T cells

B cells

[34] 107/107. Primary

tumour

1, 2, 3, 4,

4S

RT-qPCR Va24-

Ja18

iNKT in 64%

of samples

[41] 2 patients (1 paired

primary and

resection, 1

resection)

10 � single-cell RNA

seq

~2% in primary, 10

e40% of cells in

resection

NK:

Undetectable

in primary,

~0e20% in

resection

Undetectable

in primary,

~5% of

resection

[33] TARGET

(n Z 148). Primary

tumour

1, 2, 3, 4 Deconvolution of

bulk RNA seq with

CIBERSORT

Present Present CD4 and CD8

present

NK present Present

[39] 498 primary NBL.

Primary tumour

4 Deconvolution of

bulk RNA seq with

CIBERSORT.

Immune signature

from [243]

CD8 present.

Tregs present.

NK present

[38] TARGET

(n Z 150). Val

(n Z 190). Primary

tumour

3, 4, 4S Deconvolution of

bulk RNA seq with

CIBERSORT, TCR

seq

Present. Some

TCR clonality in

MYCN-NA

CD4 and CD8

present

NK present.

gd T present.

Present

[37] TARGET

(n Z 149). Val

(n Z 498),

(n Z 649),

(n Z 88). Primary

tumour.

1, 2, 3, 4,

4S

Deconvolution of

bulk RNA seq with

xCell

Present CD4 and CD8

present

NKT present

[42] TARGET

(n Z 160) and Val

(n Z 498). Primary

tumour

1, 2, 3, 4,

4S

Deconvolution of

bulk RNA seq with

CIBERSORT

Present CD4 and CD8

present

NK present Present
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Compared to blood, CD8þ T cells are preferentially

present over CD4þ T cells in the TME, with reported
Fig. 1. TIL composition and prognostic value. T cells (CD8þ T cells more

small number of B cells have been described in neuroblastoma tumour

(LR) and medium risk (MR) tumours, with MYCN-A tumours having

Tregs and (i)NKT cells has been associated with improved survival, w

and CD8þ T cells remains to be elucidated.
CD4/CD8 ratios ranging from 0.3 to 5 [21,23,29].

Functionally, TIL are able to produce IL-4, IL-5, IL-8,
than CD4þ Th1, Th2 and Treg cells), NK cells, (i)NKT cells and a

s. High-risk (HR) tumours have less TIL infiltration than low-risk

the lowest TIL infiltration. High infiltration of total CD3þ T cells,

hile the prognostic value of CD4þ T cells, CD4þ T helper subsets
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IL-10, interferon (IFN)-g and TNFa mRNA in

response to ex vivo stimulation with IL-2, which sug-

gests a mixed population of both Th1 and Th2 cells [21].

The presence of Th17 cells in neuroblastoma has not

been studied yet. NK cells were also variably detected,

ranging from rare presence to constituting up to ~30%

of TIL [21,22]. Since only two studies so far have

compared ex vivo TIL characteristics to peripheral
blood lymphocytes (PBL) from matched blood, one of

which focused on the T cell receptor (TCR) repertoire, it

is still unknown in which respect neuroblastoma-

infiltrating lymphocytes have undergone functional

specialisation and/or differentiation compared to their

counterparts in blood.

Due to the limited availability of fresh neuroblastoma

tumour material and the practical challenges of in-depth
immune analyses, most studies describe a limited num-

ber of patients. Recent publications have resorted to

computational methods to shed light on the immune

composition of neuroblastoma and identified traces and

signatures of immune infiltration by deconvolution of

bulk RNA sequencing data of tumour samples

[33,37e39]. At least 50% of cell components in the TME

were predicted to consist of immune cells, half of which
myeloid and half lymphoid [37]. The myeloid compart-

ment was predicted to mainly consist of dendritic cells

(DC), next to a small fraction of macrophages. The

lymphoid compartment was dominated by CD4þ T

helper cells, next to B cells and a small fraction of CD8þ

cytotoxic T cells [37]. This contrasts with the CD8þ

dominance proposed by IHC-based studies, which may

be due to differences in definitions and sensitivity of the
methods. NK cells, NKT cells and gd T cells were pre-

dicted to be present as well [33,37e39]. Of note, not only

in primary but also in relapsed tumours, infiltration of

CD3þ T cells has been demonstrated [29].

Recently, the first single-cell RNA sequencing study

of neuroblastoma showed a remarkable increase of T

cell infiltration after chemotherapy in a paired patient

sample e one taken at diagnosis and one in resection
material after neo-adjuvant chemotherapy e indicating

that chemotherapy-induced immunogenic cell death

may attract lymphocytes to the tumour. The amount of

lymphocyte infiltration after chemotherapy differed

substantially between tumours of different

patients [41].

The discrepancies between IHC-based and compu-

tational studies highlight the need for more stand-
ardised, high-quality and in-depth

immunophenotyping in neuroblastoma. Future studies

using techniques with single-cell resolution, comparing

TIL and patient-matched PBL, will be essential to gain

more insight into TIL composition, functional

specialisation and changes over time upon therapy or

disease progression.
2.2. Prognostic value of TIL profile

2.2.1. Prognostic value of TIL abundance

Although it is still largely unclear whether differences in

immune cell infiltration are due to tumour characteris-

tics, medication effects, or other factors, the extent and

type of TIL infiltration has been associated with prog-

nosis (Fig. 1) [24,25]. Martin & Beckwith, 50 years ago,

demonstrated a stepwise decrease of lymphocyte infil-

tration with increasing tumour stage and a higher 2-year

survival in patients with infiltrates than without in-
filtrates (Survival: 64% in TILhigh versus 11% TILlow)

[24]. Lauder & Aherne reported a direct correlation

between survival time and intensity of lymphocytic

infiltration in the primary tumour (rs Z 0.69, p < 0.001)

[25]. These findings are now supported by more recent

studies, showing reduced CD3þ, CD4þ and CD8þ T cell

infiltration in high-risk, and especially in stage 4 tu-

mours, as well as higher survival rates in patients with
higher lymphocyte, CD3þ and CD4þ T cell infiltration

(Table 2) [28,30,32,33,39,44]. Stratification of patients

by CD3þ TIL density demonstrated a significantly

higher disease-free survival (DFS), overall survival (OS)

and event-free survival (EFS) in patients with a higher

TIL density [30,32]. Although Martin & Beckwith did

not find a prognostic value of TIL infiltration for sur-

vival rates within the group of stage 3/4 tumours (OS:
17% in TILhigh versus 11% in TILlow) [24], two other

studies did observe a survival benefit of TIL infiltration

in stage 4 neuroblastoma [39,44]. Not only the amount

but also the localisation and organisation of T cells in

the TME has prognostic value. Neuroblastoma patients

with favourable outcomes were characterised by a more

structured T cell infiltrate, which was gradually lost in

tumours with a poor prognosis. While proliferating T
cells were localised in close proximity to tumour cells in

stage 4S tumours, they were placed distant from tumour

cells in stage 4 tumours. Moreover, stage 4S tumours

were characterised by a higher number of proliferating

Ki67þCD3þ T cells than stage 4 tumours [30]. The role

of immune surveillance in the spontaneous regression of

4S tumours, however, remains to be elucidated [45].

Overall, these results suggest a strong relation be-
tween TIL density and both tumour stage and patient

survival. One may speculate that the association be-

tween TIL infiltration and tumour stage is related to the

differentiation grade of the tumour, since it is an

important determinant of tumour risk stage, and may

influence immunogenicity [46]. For example, the noto-

riously low MHC-I expression of neuroblastoma [16],

rather than being the result of active downregulation,
may reflect the pre-MHC-I expressing, undifferentiated

state of the neural crest [47]. Moreover,

in vitro differentiation of neuroblastoma cell lines and

ex vivo tumours was associated with increased immu-

nogenicity, e.g. upregulated MHC-I expression, and



Table 2
Prognostic significance of TIL presence and composition in human neuroblastoma. » Z positively associated with, DC Z dendritic cell,

disc Z discovery cohort, expr Z expression, EFS Z event-free survival, fav Z favourable, FC Z flow cytometry, GFEA Z Gene functional

enrichment analysis, HR Z high-risk, IHC Z immunohistochemistry, IR Z intermediate risk, LR Z low-risk, mono Z monocytes, MYCN-(N)

A Z MYCN-(non) amplified, MØ Z macrophage, NBL Z neuroblastoma, NHR Z non-high-risk, OS Z overall survival, Pts Z patients, (RT-

q)PCRZ (reverse transcriptase-quantitative) Polymerase Chain Reaction, seq Z sequencing, Th Z T helper, TIL Z tumour infiltrating lym-

phocytes, unfav Z unfavourable, val Z validation cohort, WGCNA Z Weighted Gene Coexpression Network Analysis.

Ref Patients/

samples

Stage Method Tumour stage Risk Survival analysis MYCN

1 2 3 4 4S HR

versus

IR/LR

T cells Other

lymphocytes

(gd T, NK,

(i)NKT and

B)

[23] 8/8.

Primary

tumour

versus

blood

1, 2,

3, 4

FC: % CD3þ of

total single-cell

suspension

after digestion

2.4

e17.8%
(mean

6.7;

n Z 4)

CD3þ

0.4%

(n Z 1)

CD3þ

1.4

e7.1%
(mean

4.3;

n Z 2)

CD3þ

0.6%

(n Z 1)

CD3þ

[24] 53/53.

Primary

tumour

1, 2,

3, 4

IHC: % of

patients with

TIL infiltration

100% (5/

5)

75% (3/4) 23% (3/

13)

11% (3/

28)

2-year OS: 64%

in TILþ versus

11% in TIL�.

Within stage 3/4:

17% in TILþ

versus 11% in

TIL�.
[28] 36/36.

Resection

tumour

1, 2,

3, 4

IHC CD8: % of

patients with

CD8þ

infiltration

100% (9/

9 pts)

high

CD8þ in

nests

and

stroma

94% (15/

16 pts)

high

CD8þ in

nests and

63% (10/

16 pts)

high

CD8þ in

stroma

0% (0/

6 pts)

high

CD8þ in

nests and

17% (1/

6 pts)

high

CD8þ in

stroma

0% (0/

4 pts)

high

CD8þ in

nests and

0% (0/

4 pts)

high

CD8þ in

stroma

[34] 107/107.

Primary

tumour

1, 2,

3, 4,

4S

RT-qPCR:

Va24-Ja18

72.7%

(32/44)

Va24-

Ja18

66.7%

(16/24)

Va24-

Ja18

75% (6/8)

Va24-

Ja18

44% (11/

25)

Va24-

Ja18

66.7%

(4/6)

Va24-

Ja18

Lowest

levels in

HR

iNKT:

higher OS in

pts with

iNKT

[30] 84/84.

Primary

tumour

1, 2,

3, 4

IHC CD3,

CD4 and CD8

CD3,

CD4 and

CD8

lowest in

stage 4

Higher OS in

CD3hi and CD4hi.

CD8: no

difference.

Higher OS in

CD25hi and

FOXP3hi.

No clear

association

[25] 23/23.

Primary

tumour

N/A IHC TIL score

correlates with

OS months

(rs Z 0.69;

p < 0.001)

[32] 77/77.

Primary

tumour

1, 2,

3, 4,

4S

IHC CD3,

CD4 and CD8

Higher OS in

CD3hi and CD4hi.

CD8: no

difference

[31] 55/55.

Primary

tumour

and

metastasis

HR,

NHR

IHC CD8 and

PD-1

HR:

Higher

CD8þ

and

more

PD-1

on

CD8þ
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Table 2 (continued )

Ref Patients/

samples

Stage Method Tumour stage Risk Survival analysis MYCN

1 2 3 4 4S HR

versus

IR/LR

T cells Other

lymphocytes

(gd T, NK,

(i)NKT and

B)

[33] 15/15.

Primary

tumour

LR,

IR,

HR

IHC CD45 and

CD4

HR:

Lower

CD45

and

CD4

Low CD4

infiltration in

MYCN-A

[38] 80/80.

Primary

tumour

1, 2,

3, 4,

4S

IHC CD8 MYCN-A:

lower CD8þ

than MYCN-

A, also

within HR

[44] 41/41.

Primary

tumour

4 RT-qPCR

CD45 and

FOXP3

Higher OS and

EFS in

CD45hiand

FOXP3hi

tumours

[36] 129/129

MYCN-

NA.

Primary

tumour

4 Microarray 5-year EFS not

associated with

CD3Z, CD4,

CD8A, GNLY,

IFNG, TBX21,

CD40LG,

FOXP3, IL13,

IL15, IL17

5-year EFS

associated

with CD1D

andNKT

[43] 98/98.

Primary

tumour

4 RT-qPCR

Va24-Ja18

MYCNhi/

CCL2lo

expression

predicted

absence of

iNKT

[33] TARGET

cohort

(n Z 148).

Primary

tumour

1, 2,

3, 4

Deconvolution

of bulk RNA

seq with

CIBERSORT

CD4: Higher OS

in CD4hi, also

within MYCN-

NA. Th2 (IL-4)

but not Th1

(TNFa and

IFNg) » fav

prognosis.

CD8: no

difference

Less CD45þ,
B, CD8þ,
CD4þ, NK,

MØ, mono

and DC in

MYCN-A

than MYCN-

NA

[39] 498

primary

NBL.

Primary

tumour

4 Deconvolution

of bulk RNA

seq with

CIBERSORT.

Immune

signature from

[243]

Higher OS in T

cellhi and

cytotoxichi within

stage 4

MYCN-A:

less T cells

and less

cytotoxic

signature,

also within

stage 4

tumours

[38] TARGET

cohort

(n Z 150).

Validation

cohort

(n Z 190).

Primary

tumour

3, 4,

4S

Deconvolution

of bulk RNA

seq with

CIBERSORT,

TCR seq, IHC.

CD4 and CD8 »

fav outcome in

MYCN-NA with

high versus low

MYCN expr

NK, gd T

and B » fav

outcome in

MYCN-NA

with high

versus low

MYCN expr

MYCN-A:

lower

immune

scores than

MYCN-NA,

especially

cytotoxicity,

NK and

CD8þ T,

within HR
(continued on next page)
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Table 2 (continued )

Ref Patients/

samples

Stage Method Tumour stage Risk Survival analysis MYCN

1 2 3 4 4S HR

versus

IR/LR

T cells Other

lymphocytes

(gd T, NK,

(i)NKT and

B)

[37] TARGET

(n Z 149).

Val

(n Z 498),

(n Z 649),

(n Z 88).

Primary

tumour

1, 2,

3, 4,

4S

Deconvolution

of bulk RNA

seq with xCell

CD4 » unfav

prognosis and

OS. High Th1/

Th2 ratio » OS

and EFS. CD8 »

fav prognosis and

OS

NKT » fav

prognosis

and OS

Less immune

cells in

MYCN-A.

Higher Th1

and Th2

signatures in

MYCN-A.

[244] Disc

(n Z 105)

and Val

(n Z 101).

Primary

tumour

1, 2,

3, 4

(disc)

and

N/A

(val)

WGCNA,

GFEA

Immune gene

module

associated

with MYCN-

A

[42] TARGET

(n Z 160)

and Val

(n Z 498).

Primary

tumor

1, 2,

3, 4,

4S

Deconvolution

of bulk RNA

seq with

CIBERSORT

Risk score of 9

immune genes

(SOCS1,

MARCO,

KLRK1, IRF7,

UNC93B1,

IGHV3e20,

IGKV1e16,
AMH, SECTM1)

predicts OS
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enabled more efficient elimination of tumour cells by

CTL and NK cells [48]. In line with this reasoning,

tumoural MHC-I expression was an important predictor

for survival [32]. Thus, different tumour aspects, such as

differentiation grade and MHC-I expression, may in-

fluence TIL infiltration.
2.2.2. Prognostic value of lymphocyte subsets

While TIL density had a clear predictive value for sur-

vival, studies into the prognostic value of TIL subsets

yielded conflicting results. On the one hand, two studies

reported a beneficial prognostic role for CD8þ T cells

[31,37], with higher CD8þ abundance inHR- compared to

LR-neuroblastoma [31], and a higher predicted NKT and

CD8þ abundance correlating with a favourable prognosis

and long-term survival, while CD4þ abundance correlated
with an unfavourable prognosis [37].

On the other hand, a prevalence of CD4þ over CD8þ T

cells was associated with a better prognosis [30,32,33].

Patients with a high CD4þ T cell density had longer OS,

DFS, and EFS, while CD8þ T cell abundance was not

prognostic [30,32,33].While the former studies emphasisea

role for cytotoxic cells in theTME, the latter results suggest

thatCD4þTcell infiltrationmaybe crucial for the creation
of an effective immune response against the tumour.

Reports on CD4þ T helper subsets are conflicting as

well. One could perhaps expect a primary role for Th1

dominated CD4 responses to create help for CD8þ
CTL-mediated tumour killing, which is supported by

higher Th1/Th2 ratios correlating with better long-term

OS and EFS [37], and a higher OS in HR-

neuroblastoma patients with a high cytotoxic signature

[38,39]. However, others reported that a Th2 oriented

CD4þ T cell response (defined by IL-4 transcript levels)

but not a Th1 oriented response (TNFa and IFNg
levels) was associated with a favourable prognosis [33].
Interestingly, the favourable effect of a Th2 oriented

response would be in line with novel insights that B cell

infiltration and activation in adult solid cancers yield an

important survival benefit [49e51]. The prognostic dif-

ferences of T cell subsets in neuroblastoma may have

resulted from the different techniques, definitions and

relatively low sample numbers used. Future studies will

have to confirm whether these TIL subsets have a clear
prognostic value and role in tumour elimination.

Regulatory T cells (Tregs), often identified by high

expression of CD25 and their signature transcription

factor FOXP3, play a crucial role in the TME of various

tumours and have more often been associated with poor

than good survival [52]. This negative effect on survival

has been mainly attributed to their immunoregulatory

function. In 84 patients with neuroblastoma, a high
density of CD25þ T cells in the nests and FOXP3þ T

cells in the septa was associated with better survival [30].

High FOXP3 gene expression in tumour biopsies at

diagnosis also predicted a better EFS and OS [44]. Of
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note, high expression of CD25 and expression of

FOXP3 are not only indicators of Tregs but also of

conventional T cell activation (FOXP3 at lower levels

than in Tregs). Although Tregs can suppress TIL anti-

tumour activity, which would imply a negative effect on

survival, it seems that high FOXP3 expression may be a

proxy for high T cell infiltration, which is rather, as

discussed earlier, beneficial for prognosis.
Not only conventional T cells but also other (immune)

cell subsets have been associated with tumour stage. The

CD1d-restricted iNKT subset, characterised by expression

of Va24-Ja18, was more abundant in LR- than HR-neu-

roblastoma and predictive of better OS [34,36]. A com-

binedpredictive score, including immuneandnon-immune

cells in the TME, was a potent predictor of OS and EFS,

which indicates that not only immune components, but
rather the interrelationor interactionbetween immune and

non-immune cells within the TME determines the prog-

nosis of neuroblastoma [37]. Also, others have constructed

immune risk scores with predictive value for OS [42].

In conclusion, the prognostic relevance of CD8þ and

CD4þ T cell infiltration, as well as Th polarisation, is

still unclear. Future studies will have to point out

whether a Th1 driven cytotoxic CTL response or a Th2
driven B cell response, or rather a combination of

both, is required for the successful elimination of neu-

roblastoma tumours.

2.2.3. Relation with MYCN amplification status

Since MYCN amplification is an important driver in

neuroblastoma and indicative of poor prognosis in low

stage tumours [5], several studies have investigated its

relation with TIL infiltration and composition. Four

computational studies compared the immune composition

of MYCN amplified (MYCN-A) and non-amplified

(MYCN-NA) tumours by RNA deconvolution in multi-

ple cohorts [33,37e39]. They revealed a strong inverse
correlation between MYCN amplification and leukocyte

infiltration, demonstrating less infiltration of MYCN-A

tumours by CD8þ and CD4þ T cells, NK cells, NKT cells,

B cells, macrophages, and monocytes (Fig. 1) [33,37e39].

Remarkably, one of the studies reported higherCD4þTh1

and Th2 signatures in MYCN-A tumours compared to

MYCN-NA tumours, which may have resulted from

distinct immune definitions used in the different decon-
volution methods [37]. While one study did not find an

association between TIL infiltration and MYCN status

[30], the overall computational predictions were confirmed

in two IHC-based studies, showing lower CD4þ and

CD8þ T cell infiltration in MYCN-A tumours [33,38].

MYCN overexpression on RNA level in conjunction with

low CCL2 expression also predicted the absence of iNKT

cells [43]. Lastly, MYCN-A tumours had significantly
lower cytotoxic TIL signatures and NK signatures

compared to MYCN-NA tumours, indicating that not

only the number of cells but also their cytotoxic activity

may be lower [38,39].
Since MYCN amplification status and tumour stage

are closely related, this raises the question whether the

correlation with TIL infiltration is driven by MYCN

amplification or tumour stage. Importantly, even within

the group of HR-neuroblastoma, T cell and cytotoxic

cell signatures, as well as CD8þ infiltration, were lower

in MYCN-A than MYCN-NA tumours [38,39], sug-

gesting that low TIL infiltration is at least partly related
to MYCN amplification. Overall, these results suggest

that MYCN-A tumours have a reduced infiltration and

activity of TIL compared to MYCN-NA tumours, in-

dependent of tumour stage.

Not only MYCN amplification but also MYCN

overactivation may affect immune profiles. Within pa-

tients with MYCN-NA tumours, those with MYCN

activation signatures had lower immune signatures and
worse survival than those without MYCN activation.

Strikingly, within the subgroup of MYCN-NA patients

with high MYCN activation, those with elevated

tumoural activated NK cells, CD8þ T cells, and cyto-

lytic signatures showed improved outcome compared to

patients with lower immune signatures [38]. These

findings suggest that activated infiltrating cytotoxic im-

mune cells can ‘rescue’ patient outcomes within this
specific subgroup of MYCN-NA HR-neuroblastoma.

Possible explanations for reduced TIL infiltration in

MYCN-A tumours could be reduced immunogenicity or

reduced lymphocyte attraction and activation. Tumour

mutational load is an important determinant of tumour

immunogenicity, as illustrated by higher TIL infiltration

and cytotoxicity in tumours with a higher mutational

load [53]. Neuroblastoma tumours typically have a low
mutational burden, and therefore, low immunogenicity

[15,54,55]. One study reported increased T cell signa-

tures in HR-neuroblastoma with a high compared to

low mutation load, which was dependent on MYCN

status [39]. MYCN-A HR-neuroblastoma tumours had

significantly less nonsynonymous mutations than

MYCN-NA tumours [38,39]. However, other studies on

neuroblastoma did not find a clear correlation between
tumour mutational load and immune signatures, or

mutational load and MYCN amplification [38,56]. If

MYCN amplified tumours indeed have lower muta-

tional load, this could partly explain their lower

immunogenicity and low TIL infiltration.

Reduced immune cell attraction/activation in

MYCN-A tumours could also explain reduced TIL

infiltration. Layer et al. assessed the gene expression of
chemotactic and immune-activating mediators in

MYCN-A and MYCN-NA tumours. MYCN-A neuro-

blastoma showed reduced IFN pathway activity and

lower expression of cytokine and chemokine genes [39].

However, it is difficult to dissect cause and consequence:

while reduced IFN and chemokine expression could

hamper T cell infiltration and activation, a reduced

presence of TIL in these tissues could also account for
lower cytokine and chemokine expression. A causal role
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of MYCN was suggested by MYCN depletion in neu-

roblastoma cell lines, which enhanced IFN pathway

activity, promoted expression of Th1 recruiting chemo-

kines CXCL9 and CXCL10 and increased T cell infil-

tration [39]. Moreover, downregulation of MYCN in

a neuroblastoma cell line enhanced expression of acti-

vating NK ligands MICA, ULBPs and PVR, resulting

in increased NK cell cytolytic activity, while MYCN

overexpression effectuated the opposite, which corrob-

orated findings in human neuroblastoma tumours [57].

In addition, MYCN-A tumours repressed CCL2

expression, an important chemoattractant for lympho-

cytes [43,58]. Thus, MYCN amplification may directly

impact the immunogenicity of neuroblastoma tumours

and alter their chemokine profile.

Most studies, taken together, suggest that MYCN-A
neuroblastoma may be less immunogenic to T cell im-

mune surveillance on multiple levels. It would be inter-

esting to investigate in an experimental model whether

conditional knockdown of MYCN would increase TIL

infiltration into tumours in vivo, to assess a causal

relationship between MYCN expression and TIL infil-

tration. To our knowledge, such a study has not been

performed yet.

2.3. Lessons from experimental models

Although fundamental differences in the human and

murine immune system should be taken into account
when translating results from experimental models to

the human situation, several experimental studies with

murine models have studied the effector cells involved in

neuroblastoma anti-tumour immunity. In a murine A/J

model of C1300 neuroblastoma treated intratumourally

with activated DC, depletion of CD4þ T cells or NK

cells caused early outgrowth of tumours, whereas CD8þ

T cell depletion resulted in later tumour outgrowth
similar to undepleted controls [59]. This suggests that

CD4þ T cells play an important role in DC-mediated

anti-tumour immunity, which replicates the association

between CD4þ T cell infiltration and survival rates in

human neuroblastoma.

In syngeneic C57Bl/6 mice injected with a trans-

plantable TH-MYCN cell line endogenously expressing

GD2 and lacking MHC-I, tumours in immunocompe-
tent mice contained CD4þ and CD8þ T cells, macro-

phages and DC. However, the presence of adaptive

immunity had limited influence on tumour growth,

illustrating the low immunogenicity of neuroblastoma

and/or low tumour reactivity of TIL. In contrast,

depletion of NK cells resulted in enhanced tumour

outgrowth, demonstrating their importance in the anti-

neuroblastoma immune response in MHC-I negative
tumours [60].

The tumour burden also impacts anti-tumour im-

munity. In A/J mice bearing subcutaneous NXS2 neu-

roblastoma, a smaller tumour burden at treatment start
was associated with increased infiltration of NK and

CD8þ T cells and increased OS [61]. Similarly, in the

transgenic TH-MYCN mouse model, small ‘early’ tu-

mours had more T cell infiltration and IFNg expression,

while large ‘late’ tumours had more macrophages, DC,

and myeloid-derived suppressor cells (MDSC). During

cancer progression, the increased infiltration by myeloid

cells may contribute to an immunosuppressive envi-
ronment limiting lymphoid infiltration [62,63]. This

suggests that early detection and treatment may be key

to exploit the functionality of cytotoxic cells with

immunotherapy in an early phase.

3. Challenges and opportunities for immunotherapy

3.1. Tumour reactivity of TIL

While TIL are present in neuroblastoma, the biggest

challenge for immunotherapy so far is to generate

effective tumour reactivity, which may depend on T cell-

intrinsic factors, as well as tumour immunogenicity and

immunomodulatory factors in the TME. The latter will

be discussed in the next sections. The persistence of

neuroblastoma tumours despite T cell infiltration may

suggest that these T cells are not effectively recognising
and/or killing neuroblastoma tumour cells. Also, the

lack of survival differences between patients with HR-

neuroblastoma with and without TIL infiltrates in some

studies suggests that TIL may be present, but not

tumour-specific or not functional [24]. Although the

gathered data so far are not conclusive, some indications

suggest that TIL can become activated and recognise

autologous tumour cells, however, only at low levels
(Fig. 2).

3.1.1. Clonality

Reduced clonality of the TCR repertoire is an indication

of the antigen-driven expansion of specific T cell clones.

A reduced TCR repertoire in TIL compared to PBL
(which could be due to disproportional expansion of

tumour reactive clones) could therefore hint towards

tumour reactivity. Overall, the tumour-infiltrating T cell

pool in untreated neuroblastoma was described as

polyclonal, with a diverse Va and Vb repertoire

[21,38,40]. In a small number of patients, increased

clonality was observed in TIL compared to PBL, sug-

gesting that in some patients, TIL expansion based on
antigen specificity may occur. Since these studies were

performed in untreated patients, they do not reflect

possible induced tumour reactivity in response to

treatment.

3.1.2. Activation

Not only clonality but also the expression of activation

markers can indicate tumour reactivity. Although the

levels of activation marker CD25 were similar to PBL in

one study [64], another study reported higher levels of



Fig. 2. Tumour reactivity of TIL in neuroblastoma. Some indications of tumour reactivity have been described in a small fraction of TIL,

including reduced clonality of the T cell receptor repertoire, increased expression of activation markers HLA-DR and CD25, reduced

expression of naive T cell markers CD45RA and CCR7, suggesting conversion to a memory state, increased cytotoxicity towards neu-

roblastoma cells and increased expression of immune checkpoints, which may or may not be associated with an exhausted state.
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CD25 in TIL [23]. Others reported that both CD4þ and

CD8þ TIL in neuroblastoma tumours partly expressed

CD25 and/or HLA-DR, suggesting an activated state in

a fraction of these cells [21]. A small number of T cells in

the TME expressed Ki67, indicating active proliferation

[23]. In the same detailed IHC-based study, also a

redistribution of the CD3 component of the TCR to-

ward the area of contact with the tumour cell was
revealed. The authors suggested that the ‘pattern of

CD3 distribution, reflecting TCR aggregation [.] and

the detection of the proliferation marker Ki67 [.]

strongly indicate that tumour recognition takes place in

situ’ [23]. In line with a more activated state, cells with

an effector memory phenotype (CD45RA�CCR7-) were

more frequent in TIL than PBL, and the fraction of

naive cells (CD45RAþCCR7þ) was lower in TIL than
PBL [23]. Although a predominance of effector memory

cells might suggest differentiation upon recognition of a

cognate antigen, it is also in line with current insights in

the phenotype of human tissue-resident T cells, which is

skewed towards the effector memory state in most, even

steady-state tissues, precluding the requirement of anti-

gen specificity [65].

Thus, the activation and memory states of TIL may
suggest that, at best, a small fraction of T cells actively

recognise tumour cells, implying that most are bystander

cells. The suggested activation state of TIL could also be

reproduced by stimulation of patient PBL with autolo-

gous tumour cells in short-term cultures, which

increased the proportion of effector memory T cells,
upregulated CD25 expression, stimulated the expression

of the Th1 cytokines IFNg and TNFa, and reduced the

expression of TGFb [23]. At least some T cell clones in

the peripheral pool, therefore, seem capable of recog-

nising autologous neuroblastoma, which may be indirect

evidence that also tumour-infiltrating T cells could

contain tumour reactive cells.

3.1.3. Cytotoxicity

As discussed in the previous sections, the presence of a
high cytotoxic signature is beneficial for survival in HR-

neuroblastoma patients, which underlines the impor-

tance of cytotoxic activity over the mere presence of TIL

[38,39]. For mounting an effective anti-tumour response,

T and NK cells need to be equipped with cytotoxic

molecules such as perforin and granzymes to lyse

tumour cells. The majority of CD8þ T cells in peri-

tumoural stroma expressed perforin [22]. Granzyme B
was also detected in TIL, although at low frequency [29].

In patients with HR-neuroblastoma, high gene expres-

sion of perforin in biopsies at diagnosis predicted a

better EFS and OS, whereas the expression of granzyme

B was not prognostic [44]. In vitro, TIL showed

enhanced cytotoxicity towards neuroblastoma lines

compared to PBL [64]. Although this may suggest a

degree of neuroblastoma specificity in TIL, it may also
be explained by current insights that both tissue- and

tumour-resident lymphocytes generally have an

enhanced cytotoxic response [65]. Cytotoxicity of TIL

against neuroblastoma cell lines was markedly reduced



Fig. 3. Immune evasion strategies employed by neuroblastoma. Immune evasion strategies inhibiting T cell responses include down-

regulation of MHC-I, and expression of immune checkpoints PD-L1 and CD200. NK cell responses are inhibited by downregulation of

ligands for the NK-activating receptors DNAM-1 and NKG2D and increased expression of B7eH3. Neuroblastoma secretes a variety of

immunosuppressive molecules, including Gal-1, MIF, sGD2, sHLA-E, TGFb, sMICA, sB7-H6 and arginase-2, which can impede TIL

function. DC function is impaired by sGD2, which leads to decreased expression of MHC-II molecules (antigen presentation), decreased

CD28 ligands and CD40 (co-stimulation), reduced Th1-related IL-12 and TNFa production, and increased IL-6 and regulatory IL-10

production. In response to neuroblastoma-derived factors, monocytes produce sHLA-G, which inhibits NK cells and T cells. Also

Tregs, MDSC and MSC in the TME can suppress NK cells and T cells. Lastly, immunosuppressive molecules from the TME can reach the

circulation and impair the proliferation and cytotoxicity of peripheral T cells and NK cells, while also inducing immunosuppressive

monocytes and Tregs, thereby further aggravating lymphocyte dysfunction.
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by depletion of CD56þ cells from TIL, which re-

capitulates results in mice [60] and highlights the role of

NK cells in anti-neuroblastoma immunity [64]. Since cell

lines are derived from allogeneic material, this may not
represent the anti-tumour response in an autologous

setting. Coculture of autologous PBL with neuroblas-

toma reduced tumor growth by ~50% compared to

controls, which was similar to the reduction by
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allogeneic PBL [66]. Ex vivo expanded blood-derived

CD8þ CTL from patients stimulated with IFNg-
treated neuroblastoma cells, specifically lysed autolo-

gous neuroblastoma cells, but not HLA-mismatched

neuroblastoma or other autologous cells, suggesting

tumour-specificity [67]. Ex vivo expanded TIL from

neuroblastoma tumours, however, were largely non-

reactive to autologous tumour cells, although they did
retain the capacity to migrate towards neuroblastoma

cell lines [35].

Although TIL may not show sufficient cytotoxic ac-

tivity in vivo, with the right stimulation, they might be

trained or unleashed to become reactive to the autolo-

gous tumour, which highlights the potential of

immunotherapy.

3.1.4. Exhaustion

Another explanation for the ‘ineffective’ presence of TIL

in neuroblastoma could be exhaustion, defined as a state

of the reduced capacity of cytokine production and

usually identified by the combination of typical markers
[68]. In neuroblastoma, an upregulation of immune

exhaustion genes was found in RNA sequencing data of

tumour biopsies. Five out of seven chosen exhaustion

markers (CD244, HAVCR2, CTLA4, TIGIT, PDCD1)

were significantly higher in tumours with high cytotoxic

signatures, possibly indicating that chronic stimulation

of T cells with their cognate antigens may have led to an

exhausted state [38]. It should be noted, however, that
the state of exhaustion and its identification is still

subject to discussion in the immunology space [69]. The

here mentioned immune checkpoint molecules, which

will be further discussed in the next section, do not

necessarily indicate exhaustion, but at least point toward

the increased activity of immunomodulatory pathways

in tumours with a high cytotoxic signature. Moreover,

TIL produce a variety of cytokines upon
ex vivo stimulation with IL-2, which counters the notion

of an exhausted state [21]. The relevance of T cell

exhaustion in neuroblastoma is, therefore, still

debatable.

In conclusion, several studies suggest that, at best, a

small fraction of TIL in neuroblastoma may be tumour

reactive, although the evidence is not conclusive. The

defective anti-tumour response of TIL in neuroblastoma
may not only be due to TIL-intrinsic lack of

activation but may also result from external immuno-

suppression by the TME, including immune evasion

strategies employed by the tumour.

3.2. Tumour immune evasion strategies

The presence of TIL in neuroblastoma and their
possible tumour reactivity support the concept that pa-

tients can mount immune responses to neuroblastoma

but that these are somehow rendered ineffective. Neu-

roblastoma tumours employ several strategies to escape
killing by cytotoxic lymphocytes. Among these are the

low expression of MHC-I, expression of immune

checkpoint molecules, the induction of immunoregula-

tory myeloid cells and secretion of immunosuppressive

mediators (Fig. 3).

3.2.1. Tumour immunogenicity

Neuroblastoma tumours are lowly immunogenic due to

their low mutational burden, which is associated with a

low generation of neo-antigens [15,54,55]. Tumour-

associated antigens, which could be recognised by

patrolling T cells, are therefore scarce, although some

neuroblastoma-associated immunogenic antigens have
been identified [17]. Also, the antigen-presenting ma-

chinery, consisting of MHC-I molecules, with which

somatic cells constitutively present their intracellular

antigens, is not functional in neuroblastoma [16,70,71].

These features render neuroblastoma cells virtually

invisible to patrolling CD8þ T cells.

Tumoural MHC-I expression in neuroblastoma im-

pacts the immune response. MHC-I expression on
tumour cells correlated directly with the density of

tumour-infiltrating CD3þ T cells, the latter being an

important prognostic factor for survival [30]. Apart

from CD3 infiltration, high tumoural MHC-I expression

was associated with a significantly better OS than low

MHC-I expression, and stage 3 and 4 tumours had

significantly lower MHC-I expression than stage 1, 2

and 4S tumours [30,32]. The combined presence of
MHC-I and/or TIL was even more predictive for sur-

vival: all patients with MHC-IhighCD3high tumours were

alive after >10 years of follow-up, while survival of

patients with MHC-IlowCD3low tumours was only ~40%

[32]. Of note, tumour stage, influencing both MHC-I

and CD3 status, likely contributed to this effect since

patients were not stratified by tumour stage.

MHC-I expression also depends on MYCN amplifi-
cation status. MYCN-A tumours had lower MHC-I

expression than MYCN-NA tumours, and induction of

MYCN expression in a MYCN-NA neuroblastoma cell

line resulted in suppression of MHC-I [38]. Low

immunogenicity of MYCN-A tumours, as discussed in

previous sections, may therefore be a direct result of

MHC-I suppression.

The relevance of MHC-I expression was also
demonstrated experimentally. Both in vitro and in vivo,

treatment of neuroblastoma models with IFNg led to

increased MHC-I expression and subsequently

enhanced killing by CTL [72]. Moreover, a pilot clinical

trial among 5 HR-neuroblastoma patients treated with

intravenous IFNg for 5 days resulted in increased

MHC-I expression and augmented T cell trafficking in

tumours in 2 out of 5 patients. In the other 3 patients,
MHC-I was not upregulated, and only very few CD3þ T

cells were observed [72]. These studies highlight the

potential direct in vitro and in vivo effects of increased

MHC-I expression on tumour immunogenicity.



J. Wienke et al. / European Journal of Cancer 144 (2021) 123e150136
In conclusion, MHC-I and neo-antigen expression

are important determinants of tumour immunogenicity

and thus T cell infiltration, which affects patient prog-

nosis. MHC-I upregulation should, therefore, be

considered as a therapeutic target that may be exploited

in combination with additional immunotherapeutic

strategies to overcome immune resistance [47,70].

3.2.2. Escaping NK cells

Due to their low MHC-I expression, neuroblastoma
cells may not be susceptible to recognition by CTL, but

should be rendered vulnerable to NK cells. In vitro, NK

cells were indeed capable of killing neuroblastoma cells,

although pre-activation of isolated NK cells was

required in some settings [73,74]. However, in patients,

additional escape mechanisms that modulate the bal-

ance between activating and inhibitory signals on NK

cells seem to protect neuroblastoma from NK-mediated
killing (reviewed in Refs. [75]). For example, neuro-

blastoma tumours have a low expression of ligands

(PVR, nectin-2, MICA, MICB and ULBPs) for NK cell-

activating receptors DNAM-1 and NKG2D [76,77].

MYCN expression can also modulate susceptibility of

neuroblastoma to NK-mediated killing: upregulation of

MYCN in an inducible cell line led to downregulation of

NK-activating ligands, resulting in reduced NK-
mediated lysis of the tumour cells [57]. However, as

demonstrated in multiple studies, NK cell balance can

be restored by the anti-GD2 antibody Dinutuximab,

which potently induces NK cell cytotoxicity to neuro-

blastoma [7,9,12,78,79].

3.2.3. Immune checkpoint molecules

Next to low tumour immunogenicity, the reactivity of

TIL towards neuroblastoma may be heavily modulated

by the presence of immune checkpoints (IC) in the
TME, the importance of which is underlined by the

recent breakthroughs achieved by ICI in adult cancers

[1].

In pediatric solid cancers, high expression of IC in the

TME was associated with poor prognosis [80]. PD-L1 is

a potent inhibitor of T cell responses by binding to its

receptor PD-1 on effector T cells. Blockade of PD-1/PD-

L1 interaction has demonstrated remarkable therapeutic
efficacy in various adult cancers by restoring T cell

reactivity [81]. Assessment of PD-L1 expression in

neuroblastoma has so far yielded conflicting results.

IHC-based studies reported variable PD-L1 expression,

in 14%, 19%, 35% and >70% of neuroblastoma tumours

[27,31,82,83]. High PD-L1 expression was associated

with inferior survival and an increased risk of recurrence

[27,32,82,83], which was in line with stage 3/4 tumours
having higher PD-L1 expression than stage 1, 2 and 4S

tumors [32]. Even within HR and stage 4 patients, high

PD-L1 expression was associated with inferior survival

[27]. While patients with PD-L1highCD3low tumours had

the worst prognosis, patients with PD-L1lowCD3high
tumours had the best OS [32]. Other studies, however,

reported opposite results with lower PD-L1 expression

in HR tumours [83,84], or similar PD-L1 expression

between HR and non-HR tumours [31]. Reduced PD-L1

expression was also reported in MYCN-A tumours

[39,83]. Thus, while PD-1 and PD-L1 are expressed in

neuroblastoma, their prognostic significance remains

uncertain.
Several studies point towards the involvement of the

PD-1/PD-L1 axis in TIL infiltration in neuroblastoma.

While PD-L1 expression did not correlate with CD45þ

leukocyte or CD8þ T cell infiltration in two studies

[31,82], it coincided with and was upregulated by TIL

infiltration in another [84]. In neuroblastoma-infiltrated

bone marrow (BM), PD-1 was mainly detected on ab T

cells, gd T cells and NK cells, indicating that these may
be sensitive to high PD-L1 in the TME [85]. PD-L1

blockade on neuroblastoma cell lines induced CD4þ

and CD8þ T cell activation in vitro [86]. In conclusion,

the PD-1/PD-L1 checkpoint may contribute to the in-

hibition of TIL activation in neuroblastoma.

Other IC implicated in neuroblastoma are CD200/

CD200R and B7eH3. CD200 was overexpressed on

neuroblastoma tumour cells, and its receptor CD200R
was (lowly) expressed on CD4þ and CD8þ TIL [87].

CD200high tumours had lower numbers of CD4þ and

CD8þ TIL, and TIL produced less IFNg and TNFa
[87]. High B7eH3 expression in neuroblastoma corre-

lated with poor EFS [88], and blockade of B7eH3

resulted in enhanced NK cell-mediated killing of neu-

roblastoma cells in vitro [88,89].

The in vivo importance of IC activity in neuroblas-
toma was highlighted in a recently published elegant

study demonstrating the formation of human neuro-

blastoma in mouse-human neural crest chimeras.

Although the tumours were extensively infiltrated by

tumour reactive mouse CTL, the tumours suppressed

immunity by enhancing the expression of PD-L1 and

infiltration of Tregs, supporting findings in human

neuroblastoma [90]. In conclusion, several IC may be
active in neuroblastoma, possibly affecting both T cell

and NK cell functions.

3.2.4. Immunosuppressive myeloid and stromal cells

Besides hiding from T cells and NK cells, neuroblas-
toma employs indirect immunoregulatory mechanisms

by chartering myeloid and stromal cells to dampen TIL

reactivity.

While T cells have the direct killing capacity, their

function depends on antigen presentation and co-

stimulation by DC, which are therefore central to anti-

tumour immunity. Neuroblastoma can interfere with T

cell priming by DC on multiple levels, e.g. by inducing
DC apoptosis through the expression of pro-apoptotic

factors like FAS ligand [91,92]. FAS ligand expression

was associated with high stage tumours independent of

MYCN status [91], while decreased DC infiltration was
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associated with a poor prognosis, underlining their

importance for effective anti-tumour immunity [93]. In

addition, neuroblastoma can induce DC dysfunction by

modulating their antigen-presenting and co-stimulatory

capacity through decreasing expression of HLA-DR,

co-stimulatory molecules CD40, CD80, CD83, and

CD86, and Th1 cytokines IL-12 and TNFa, while

increasing IL-6 and regulatory IL-10 [94e96]. These
effects were attributed to soluble factors, specifically

gangliosides, secreted by the tumour [94e96].

Neuroblastoma-exposed DCs were unable to effectively

activate T cells and iNKT cells, which resulted in

reduced proliferation, activation and Th1 polarisation,

including IFNg production [94e96], and in some cases

could even inhibit T cell proliferation [92]. Thus, neu-

roblastoma can induce DC dysfunction, which leads to
an inability to stimulate effective TIL anti-tumour

responses.

Myeloid-derived suppressor cells (MDSCs) are a

notorious population of myeloid cells in the TME,

which can suppress lymphocyte responses [62,63].

MDSCs accumulated during tumour progression in a

murine TH-MYCN neuroblastoma model [97], and

promoted tumour growth through secretion of reactive
oxygen species, arginase-1 and TGFb [98]. Treatment of

neuroblastoma-bearing mice with polyphenol E, which

reduced the number of MDSC, reinvigorated T cell

proliferation and reduced tumour growth [99].

Next to myeloid cells, also stromal cells in the TME

may contribute to immunosuppression. Mesenchymal

stromal cells (MSC) isolated from neuroblastoma tu-

mours exhibited an extraordinary immunosuppressive
capacity on activated T cells, even more than BM-

derived MSC [100]. In vitro and in vivo, NK cell-

mediated antibody-dependent cellular cytotoxicity

(ADCC) against neuroblastoma with anti-GD2 was

suppressed by MSC and monocytes [101].

In vivo depletion of MSC, monocytes and endothelial

cells restored NK cell activity, demonstrating the

immunosuppressive capacity of the myeloid and stromal
compartments in the TME [101]. In conclusion, neuro-

blastoma tumours are intermixed with myeloid and

stromal cell populations with defective activating func-

tions or enhanced suppressive functions, which can

prevent TIL from effectuating an anti-tumour response.

3.2.5. Soluble mediators of immune suppression

Neuroblastoma cells secrete a variety of soluble media-

tors that can suppress lymphocyte activation, including

TGFb, galectin-1, MIF, soluble GD2 (sGD2), and

arginase-2.

TGFb, galectin-1 and MIF are well-known immu-

nosuppressive molecules produced by neuroblastoma,
which can impair CTL and/or NK cell function

[52,102e106]. In experimental neuroblastoma models,

NK cell function was directly modulated by TGFb [107],

and tumoural galectin-1 or MIF knockdown resulted in
increased T-cell-mediated cytotoxicity, IFNg secretion,

CD4þ and CD8þ T cell recruitment, and more efficient

tumour rejection [104,108,109]. Soluble galectin-1, as

well as MIF overexpression, induced T cell apoptosis,

inhibited T cell proliferation and inhibited DC matu-

ration [104,110,111]. In patients, high tumoural MIF

was associated with lower abundance of CTLs, NKT

cells, B cells and DC, and a poor prognosis in stage 4
tumours independent of MYCN [112]. Elevated

tumoural TGFb was associated with shorter EFS [36].

Thus, TGFb, galectin-1 and MIF secreted by neuro-

blastoma can reduce TIL anti-tumour activity and affect

prognosis.

Surface expression of the ganglioside GD2 is a hall-

mark of human neuroblastoma. GD2 can be shed in a

highly immunosuppressive soluble form, which was
detected at >50-fold increased concentrations in patient

serum and was particularly suppressive in patients with

stage 3/4 tumours [113e115]. sGD2 inhibits T cell pro-

liferation [114,116], and therefore, likely contributes to

tumour immune evasion. Anti-GD2 therapy may

possibly derive part of its effectivity from blocking

sGD2.

Next to immunomodulatory molecules, neuroblas-
toma produces arginase-2, which reduces levels of argi-

nine e an essential amino acid for lymphocytes e and

thereby suppresses T cell proliferation in vitro and

in vivo. High arginase-2 and low arginine were demon-

strated in patients with neuroblastoma, both locally and

systemically, and arginase activity correlated with poor

survival [117]. Mice with a larger tumour burden had

lower serum arginine [117], which may explain why
those with a large tumour burden showed decreased

infiltration of cytotoxic lymphocytes and decreased OS

[61]. Thus, arginase-2 activity may have deleterious ef-

fects on TIL activity. Also, catecholamines produced by

neuroblastoma can have immunoregulatory effects

[118,119].

Several other immunosuppressive molecules have

been described in neuroblastoma, including sMICA,
sB7-H6, sHLA-E, sHLA-G, IL-10 and HMGB1. MICA

and B7eH6, neuroblastoma surface-bound ligands for

activating receptors on NK cells and CTL, are sup-

pressive when secreted. sMICA was elevated in patient

serum, downregulated its receptor NKG2D on CTL and

decreased NK-mediated killing of neuroblastoma [77].

Serum sB7-H6 correlated with downregulation of its

receptor NKp30, the occurrence of bone metastases and
chemoresistance, and sB7-H6 inhibited NK cell function

in vitro [120]. Both sMICA and sB7-H6 may thus have

relevant immunosuppressive effects in neuroblastoma.

HLA-E was highly expressed in neuroblastoma, espe-

cially in stage 4 tumours, and inhibited in vitro NK cell

cytotoxicity while inducing IL-10 and TGFb [121].

sHLA-G was produced by monocytes in the TME in

response to neuroblastoma exposure, inhibited NK and
CTL function, was increased in neuroblastoma patient
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serum and prognostic for relapse [122]. sHLA-G and

sHLA-E were highest in BM plasma of patients with

metastatic disease [123]. Thus, HLA-E and HLA-G can

reduce cytotoxic lymphocyte function and are related to

tumour activity. The immunosuppressive HMGB1 was

overexpressed in 11% of neuroblastoma patients and

was associated with an increased risk of disease pro-

gression, relapse and disease-related death [124].
Concluding, a large variety of immunosuppressive

factors in the TME can reduce NK cell and CTL func-

tion, thereby impairing anti-tumour immunity.

3.2.6. Systemic effects of immunosuppression

The immunosuppressive effects of these soluble factors

may not be limited to the TME but may become sys-

temic upon reaching the circulation and induce broad

lymphocyte defects. These systemic effects are notable:

in untreated neuroblastoma patients, the frequency of

circulating T cells is reduced [117], and particularly
those with large, invasive tumours and/or metastatic

disease, can even present with lymphopenia [125e128].

Not only T cell numbers but also function is decreased.

Circulating ab T cells and gd T cells from untreated

neuroblastoma patients had reduced proliferative ca-

pacity [117,129], and gd T cells showed reduced

expression of granzyme B, perforin and IFNg [129].

Moreover, untreated neuroblastoma patients had
increased circulating IL-10, IL-4, IL-6 and reduced

IFNg and IL-12 levels compared to controls, suggesting

Th2 dominance with reduced Th1-mediated cytotoxicity

[129,130]. Although the lymphocyte defects are likely

due to the combination of immunosuppressive signals,

the lack of arginine may be crucial, as arginine supple-

mentation reversed the suppressive effect of patient

plasma on T cell proliferation [117]. In xenograft
studies, T cells showed defective anti-tumour responses

as well, both locally and systemically [131].

These defects may be induced directly by the plethora

of immunosuppressive signals or indirectly through

tumour-educated myeloid cells or Tregs. In untreated

neuroblastoma patients, blood-derived myeloid cells

suppressed allogeneic T cell responses [117], and circu-

lating Treg frequencies were increased, which normal-
ised after debulking surgery and increased upon tumour

progression, suggesting a strong link between tumour

activity and Treg induction as an additional immune

evasion strategy [130,132]. Defective lymphocyte func-

tion was additionally underlined by suboptimal vacci-

nation responses. Importantly, these lymphocyte defects

were already present at diagnosis, before treatment, and

therefore probably tumour-induced [133]. Subsequent
rounds of chemotherapy and radiation therapy likely

further reduce T cell numbers and function.

In conclusion, neuroblastoma creates a highly

immunosuppressive environment, not only locally in the
tumour, but also systemically, which represents a major

challenge for immunotherapeutic interventions.
4. Implications for immunotherapy

4.1. Immunotherapy development

Immunotherapy in neuroblastoma has already proven

its efficacy with the introduction of the anti-GD2 anti-

body Dinutuximab into the standard treatment regimen,

which significantly improved survival rates [6,9e13].
Even in patients with relapsed disease, Dinutuximab

may have a treatment value [134,135]. The success of

Dinutuximab has sparked investigations into combina-

tion therapy with cytotoxic compounds (NCT04385277,

NCT03794349) [135e137], as well as cellular immuno-

therapy with (haploidentical) donor NK cells

(NCT02573896, NCT03242603, NCT02100891,

NCT04211675, NCT01807468) [138,139,148,140e147],
the results of which are promising. However, a disad-

vantage of NK cell-mediated therapy is its inability to

induce immunological memory. Patients with minimal

residual disease may, therefore, be at risk for relapse

upon treatment withdrawal. Induction of a T cell

memory response with durable effects may be a desir-

able, perhaps additional, strategy.

T cells can be engaged, c. q. exploited, by cellular
therapy with engineered T cells expressing chimeric an-

tigen receptors (CAR) or ex vivo activated T cells, by

ICI, or vaccination. So far, cellular immunotherapies

employing CAR T cells and ex vivo expanded cytotoxic

lymphocytes have not had overwhelming success in

neuroblastoma, with only a fraction of patients

achieving measurable responses [149e155]. CAR T cell

effectivity is limited by a rapid decline in CAR T cell
numbers after infusion, suboptimal potency, a paucity

of tumour-specific targets and an immunosuppressive

TME [14,156]. Nevertheless, next-generation CAR T

cells are currently under investigation in many clinical

trials for neuroblastoma, targeted at L1CAM

(NCT02311621) [157], B7eH3 (NCT04483778) [158],

EGFR (NCT03618381) [159] and GD2 (NCT02919046,

NCT02765243, NCT02761915, NCT01822652,
NCT03635632, NCT03721068, NCT03294954,

NCT02992210, NCT03373097, NCT01953900)

[160e169]. Notably, encouraging results of CAR-NKT

cell therapy for neuroblastoma were recently reported

in an interim analysis [170]. A proof of principle for the

exciting possibility of expanding TIL ex vivo for rein-

fusion therapy, which showed remarkable effectivity in

melanoma and cervical carcinoma [171,172], was
recently provided. Although expanded TIL did not

show direct reactivity against neuroblastoma, they pro-

duced IFNg and were able to migrate towards neuro-

blastoma cell lines [35].



Fig. 4. Immunotherapeutic strategies for neuroblastoma, two or more of which could be combined to increase effectivity. Without immu-

notherapy, T cells cannot recognise neuroblastoma because of low MHC-I expression, and NK cell activity is hampered by low expression

of activating ligands. Soluble immunoregulatory mediators in the TME, MSC and MDSC further inhibit T and NK cell function. Various

targets for immunotherapy can be exploited. Checkpoint inhibition can reinvigorate T cell function, bispecific antibodies may induce T cell

tumour reactivity, NK cells can be activated with anti-GD2 antibodies and MSC and MDSC can be depleted. The immunosuppressive

effect of soluble mediators can be reduced, which will also increase the costimulatory capacity of DC. Successful activation of T and/or

NK cells, resulting in secretion of IFNg, can induce MHC-1 expression on neuroblastoma, which further enhances T cell reactivity,

thereby creating a positive feedback loop.
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As an alternative to cellular immunotherapy, T cell
immunity can also be enhanced by ICI, which harnesses

naturally occurring anti-tumour T cell responses.

Recently, the first clinical trial of ICI among neuro-

blastoma patients, testing anti-PD-1 antibody Pem-

brolizumab, reported disappointing results with 4/11

neuroblastoma patients having progressive disease dur-

ing treatment and none showing a response. Also, in

other pediatric solid cancers [80], as well as murine
models of neuroblastoma, ICI monotherapy did not

show therapeutic effects [84,173e176]. Ongoing studies

with ICI in neuroblastoma with Pembrolizumab

(NCT02332668) [177], anti-PD1 Nivolumab and/or anti-

CTLA4 Ipilimumab (NCT04500548, NCT02304458,

NCT03838042, NCT02914405, NCT04412408,
NCT01445379) [178e183], will hopefully provide more
insight into their potential efficacy for relapsed

neuroblastoma.

For redirecting T cells to the tumour, anti-GD2 x

anti-CD3 bispecific antibodies (NCT03860207) [184], as

well as ex vivo expanded autologous T cells armed with

the anti-CD3 � hu3F8 bispecific antibody (GD2Bi,

NCT02173093) are currently investigated in phase I/II

trials [185].
Lastly, vaccination with tumour antigens or cytokine-

producing tumour cells has been explored to induce T

cell responses in neuroblastoma, but again with only

limited or uncertain long-term responses

[29,133,194,186e193]. Although immune activation and

even induction of tumour-specific immunity were
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observed in most studies, the long-term efficacy

remained remarkably low. Novel strategies, including

personalised vaccines with self-tumour antigens, may

yield increased efficacy of vaccination therapy

(NCT04239040, NCT02998983, NCT00911560,

NCT04049864) [195e199].

Concluding, the promising results of NK-cell medi-

ated therapies in neuroblastoma are so far not matched
by T-cell mediated therapies, which demonstrate only

moderate to low effectivity in clinical trials.
4.2. Combination immunotherapy

The limited success of T cell-mediated therapies illus-

trates the challenges for eliciting T cell reactivity in

neuroblastoma, as outlined in the previous paragraphs.

It has become clear that not only the natural immune

response but also effectivity of immunotherapeutic ap-
proaches are hampered by the many immunosuppressive

mechanisms at play. Combination immunotherapy,

targeting multiple immunomodulatory processes simul-

taneously, may, therefore, be required (Fig. 4). Espe-

cially for cellular therapy or ICI, restoration of an

environment conducive to immunity may be necessary

to unleash the full T cell potential and increase persis-

tence. This may include restoration of arginine levels
[117], depletion of MDSC [101,200], blockade of (solu-

ble) anti-GD2 and TGFb [201], and/or induction of

MHC-I expression [202]. Indeed, treatment regimens

combining multiple immunotherapeutic strategies, some

of which even engage innate and adaptive immunity,

were more effective in neuroblastoma patients than

monotherapies [139,154,193]. Arginase activity impaired

CAR T cell proliferation and cytotoxicity, which could,
however, be rescued by inhibition of arginase [117], and

resistance to ICI could be overcome by supplementary

blockade of TGFb [203,204]. In murine neuroblastoma

models, monotherapy with ICI was not effective either,

whereas combination therapy with anti-GD2, vaccina-

tion, Treg depletion, or myeloid inhibition strongly

enhanced anti-tumour immunity [84,173e176,205].

Anti-TGFb improved NK-cell mediated anti-tumour
activity [201]. Combining adoptive T cell therapy with

ICI to amplify the response is another promising strat-

egy [154,206,207].

Lastly, combining NK cell and T cell-mediated

therapies could have the additional benefit of ‘corner-

ing’ the tumour with regard to its MHC-I expression

[74]. The combination of anti-PD-1 and anti-GD2

proved encouraging in a recent case report of 2 re-
fractory neuroblastoma patients [208] as well as in a

murine neuroblastoma model [205]. However, especially

for combination therapy, it will be important to balance

effectivity with the risk of immunotoxicity [209].
4.3. Biomarkers predicting immunotherapy response

With only a fraction of patients responding to immu-
notherapy, the identification of biomarkers predicting

therapy responses will be an important aspect of

implementing immunotherapy in neuroblastoma. In the

adult cancer space, it has become clear that the efficacy

of immunotherapy depends on various patient and

tumour specific factors, such as tumour mutational load,

expression of immune checkpoint molecules, tumour

infiltration of T cells and B cells, and presence of
lymphoid aggregates [49e51,210e212]. Multifactorial

predictive models are being designed to provide more

accurate predictions [212e214].

In neuroblastoma, the balance between activating

and suppressive NK cells ligands, genotypes of Fcg-re-
ceptors, NKp30, KIR and NKG2D, as well as MYCN

expression were shown to strongly correlate with the

response to anti-GD2 immunotherapy
[57,120,215e221]. Biomarkers for T-cell mediated

immunotherapy have not been explored yet. In conclu-

sion, personalised (combination) immunotherapy based

on response prediction will likely be a valuable approach

in neuroblastoma.
5. Conclusion and future perspectives

The success of immunotherapy in various adult can-
cers has demonstrated its outstanding potency and

warrants investigations into the application of existing

immunotherapeutics, as well as the development of

novel immunotherapeutic interventions for pediatric

solid cancers. As discussed in this review, successful

implementation of immunotherapy for HR-

neuroblastoma is challenging due to the low immuno-

genicity of HR-neuroblastoma and a large number of
immunomodulatory mechanisms at play, both locally

and systemically, leading to low numbers and ques-

tionable tumour reactivity of TIL. It may, therefore, be

an attractive strategy to convert the immunosuppressive

environment into an immunostimulating one with tar-

geted therapies. For accelerating novel immunotherapy

development for HR-neuroblastoma, some consider-

ations may be taken into account [222].
First, the development of suited in vitro and

in vivo models to study the effect of immune in-

terventions within the context of the TME will be of key

importance since cellular crosstalk within the TME

heavily shapes the outcome of any intervention. 3D

culture systems (e.g. organoids or cell-laden hydrogels)

or air-liquid interface cultures that include stromal,

endothelial, myeloid, lymphoid and tumoural compo-
nents, representing the entire TME, could be used to

study these interactions [223e225]. Since the murine and

human immune systems bear fundamental differences,

immunotherapy testing in neuroblastoma models may
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require specific, humanised models, preferably with a

tumour-autologous immune system [60,226].

Second, to develop targeted interventions, a detailed

view of the immunological landscape in neuroblastoma

will be essential. So far, published studies show rather

conflicting findings, which suggests that the current re-

sults may be hampered by low patient numbers and/or

suboptimal analysis techniques. Although several
studies have confirmed the presence of TIL and their

relation to prognosis, the functional specialisation and

differentiation of lymphocytes in neuroblastoma are still

elusive. For exploiting their cytotoxic functions, e.g. in

the context of ICI, it is crucial to gain insights into the

phenotype, composition, polarisation, clonality, func-

tionality, and differentiation state in single-cell resolu-

tion. Also, the spatial organisation of lymphocytes, e.g.
formation of tertiary lymphoid structures, may provide

important prognostic and functional clues, as has been

demonstrated in adult cancers [22,50,51,227,228].

Moreover, differences in the immune landscape between

neuroblastoma patients may serve as biomarkers for the

prediction of immunotherapy response.

One of the biggest challenges in neuroblastoma so far

is the creation of immunological memory to induce a
durable response, preventing relapses. Combination

immunotherapy is likely the most promising strategy to

overcome low T cell reactivity. Next to combining

existing immunotherapies to overcome immune-

resistance, novel approaches may improve efficacy.

For example, the identification of novel immune

checkpoints in the TME with functional relevance, such

as TIGIT, TIM-3 and phagocytosis checkpoints
[229e231], identification of novel tumour antigens

serving as target proteins [232,233], the development of

trispecific antibodies for T cell activation [234], rein-

vigorating myeloid cell function [235,236], personalised

CRISPR-engineering of T cells [237,238], CAR-NK cells

[239], and nanomedicine [240] are all promising novel

approaches currently explored in the adult cancer space.

Also, the timing of immunotherapy may require
reconsideration. Early application of ICI in the induc-

tion phase may improve efficacy by optimally exploiting

the autologous immune response and immunostimula-

tory effects of chemotherapy [241,242]. This upfront

setting will shortly be explored for Dinutuximab in HR-

neuroblastoma.

In conclusion, the low immunogenicity of neuro-

blastoma and widespread immunosuppressive effects of
the tumour result in a lack of TIL infiltration, activation

and tumour reactivity, which severely hampers the

effectivity of current immunotherapeutic strategies.

Combination therapy, engaging different cell types or

targeting multiple immunological mechanisms simulta-

neously, may provide more effective therapies. Trans-

lation of the here mentioned principles to

neuroblastoma, and perhaps pediatric oncology in gen-
eral, may warrant a deeper understanding of pediatric
tumour immunology and how we should harness it to

improve immunotherapy and increase patient survival

with optimal quality of life.
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