79 research outputs found

    Air monitoring for illegal drugs including new psychoactive substances: A review of trends, techniques and thermal degradation products

    Get PDF
    The detection of illicit psychotropic substances in both indoor and outdoor air is a challenging analytical discipline and the data from such investigation may provide intelligence in a variety of fields. Applications of drug monitoring in air include providing data on national and international drug consumption trends, as monitored by organisations such as the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) and the United Nations Office on Drugs and Crime (UNODC). Air monitoring enables mapping of illicit drug manufacturing, dealing or consumption in cities and the identification of emergent compounds including the recent proliferation of new psychoactive substances (NPS). The rapid spread of NPS has changed the global drug market with greater diversity and dynamic spread of such compounds over several nations. This review provides an up to date analysis of key thematic areas within this analytical discipline. The process of how illicit psychotropic substances spread from emission sources to the atmosphere is considered alongside the sampling and analytical procedures involved. Applications of the technique applied globally are reviewed with studies ranging from the analysis of individual dwellings through to major international air monitoring campaigns providing evidence on global drug trends. Finally, we consider thermal breakdown products of illicit psychotropic substances including NPS that are released upon heating, combustion or vaping and related potential for exposure to these compounds in the air

    Molecular and phenotypic profiling from base to the crown in maritime pine wood-forming tissue

    Get PDF
    Research‱ Environmental, developmental and genetic factors affect variation in wood properties at the chemical, anatomical and physical levels. Here, the phenotypic variation observed along the tree stem was explored and the hypothesis tested that this variation could be the result of the differential expression of genes/proteins during wood formation. ‱ Differentiating xylem samples of maritime pine (Pinus pinaster) were collected from the top (crown wood, CW) to the bottom (base wood, BW) of adult trees. These samples were characterized by Fourier transform infrared spectroscopy (FTIR) and analytical pyrolysis. Two main groups of samples, corresponding to CW and BW, could be distinguished from cell wall chemical composition. ‱ A genomic approach, combining large-scale production of expressed sequence tags (ESTs), gene expression profiling and quantitative proteomics analysis, allowed identification of 262 unigenes (out of 3512) and 231 proteins (out of 1372 spots) that were differentially expressed along the stem. ‱ A good relationship was found between functional categories from transcriptomic and proteomic data. A good fit between the molecular mechanisms involved in CW–BW formation and these two types of wood phenotypic differences was also observed. This work provides a list of candidate genes for wood properties that will be tested in forward genetic

    Scientific assessment of the use of sugars as cigarette tobacco ingredients: A review of published and other publicly available studies

    Get PDF
    Sugars, such as sucrose or invert sugar, have been used as tobacco ingredients in American-blend cigarettes to replenish the sugars lost during curing of the Burley component of the blended tobacco in order to maintain a balanced flavor. Chemical-analytical studies of the mainstream smoke of research cigarettes with various sugar application levels revealed that most of the smoke constituents determined did not show any sugar-related changes in yields (per mg nicotine), while ten constituents were found to either increase (formaldehyde, acrolein, 2-butanone, isoprene, benzene, toluene, benzo[k]fluoranthene) or decrease (4-aminobiphenyl, N-nitrosodimethylamine, N-nitrosonornicotine) in a statistically significant manner with increasing sugar application levels. Such constituent yields were modeled into constituent uptake distributions using simulations of nicotine uptake distributions generated on the basis of published nicotine biomonitoring data, which were multiplied by the constituent/nicotine ratios determined in the current analysis. These simulations revealed extensive overlaps for the constituent uptake distributions with and without sugar application. Moreover, the differences in smoke composition did not lead to relevant changes in the activity in in vitro or in vivo assays. The potential impact of using sugars as tobacco ingredients was further assessed in an indirect manner by comparing published data from markets with predominantly American-blend or Virginia-type (no added sugars) cigarettes. No relevant difference was found between these markets for smoking prevalence, intensity, some markers of dependence, nicotine uptake, or mortality from smoking-related lung cancer and chronic obstructive pulmonary disease. In conclusion, thorough examination of the data available suggests that the use of sugars as ingredients in cigarette tobacco does not increase the inherent risk and harm of cigarette smoking

    Voltammetric determination of catechol based on a glassy carbon electrode modified with a composite consisting of graphene oxide and polymelamine

    Get PDF
    The authors describe an voltammetric catechol (CC) assay based on the use of a glassy carbon electrode (GCE) modified with a composite consisting of graphene oxide and polymelamine (GO/PM). The modified GCE was characterized by field emission scanning electron microscopy, elemental analysis, Raman spectroscopy and FTIR. Cyclic voltammetry reveals a well-defined response to CC, with an oxidation peak current that is distinctly enhanced compared to electrodes modified with GO or PM only. The combined synergetic activity of GO and PM in the composite also results in a lower oxidation potential. Differential pulse voltammetry (DPV) shows a response that is linear in the 0.03 to 138 ÎŒM CC concentration range. The detection limit is 8 nM, and the sensitivity is 0.537 ÎŒAâ‹…ÎŒM−1 ⋅cm−2 . The sensor is selective for CC even in the presence of potentially interfering compounds including hydroquinone, resorcinol and dopamine. The modified GCE is highly reproducible, stable, sensitive, and shows an excellent practicability for detection of CC in water samples
    • 

    corecore