38 research outputs found

    Microfabricated high-finesse optical cavity with open access and small volume

    No full text
    We present a microfabricated optical cavity, which combines a very small mode volume with high finesse. In contrast to other micro-resonators, such as microspheres, the structure we have built gives atoms and molecules direct access to the high-intensity part of the field mode, enabling them to interact strongly with photons in the cavity for the purposes of detection and quantum-coherent manipulation. Light couples directly in and out of the resonator through an optical fiber, avoiding the need for sensitive coupling optics. This renders the cavity particularly attractive as a component of a lab-on-a-chip, and as a node in a quantum network

    A three-dimensional electrostatic actuator with a locking mechanism for a new generation of atom chips

    No full text
    A micromachined three-dimensional electrostatic actuator that is optimized for aligning and tuning optical microcavities on atom chips is presented. The design of the 3D actuator is outlined in detail, and its characteristics are verified by analytical calculations and finite element modelling. Furthermore, the fabrication process of the actuation device is described and preliminary fabrication results are shown. The actuation in the chip plane which is used for mirror positioning has a working envelope of 17.5 ?m. The design incorporates a unique locking mechanism which allows the out-of-plane actuation that is used for cavity tuning to be carried out once the in-plane actuation is completed. A maximum translation of 7 ?m can be achieved in the out-of-plane direction

    The effect of self-affine fractal roughness of wires on atom chips

    Get PDF
    Atom chips use current flowing in lithographically patterned wires to produce microscopic magnetic traps for atoms. The density distribution of a trapped cold atom cloud reveals disorder in the trapping potential, which results from meandering current flow in the wire. Roughness in the edges of the wire is usually the main cause of this behaviour. Here, we point out that the edges of microfabricated wires normally exhibit self-affine roughness. We investigate the consequences of this for disorder in atom traps. In particular, we consider how closely the trap can approach the wire when there is a maximum allowable strength of the disorder. We comment on the role of roughness in future atom--surface interaction experiments.Comment: 7 pages, 7 figure

    Atom chip for BEC interferometry

    Get PDF
    We have fabricated and tested an atom chip that operates as a matter wave interferometer. In this communication we describe the fabrication of the chip by ion-beam milling of gold evaporated onto a silicon substrate. We present data on the quality of the wires, on the current density that can be reached in the wires and on the smoothness of the magnetic traps that are formed. We demonstrate the operation of the interferometer, showing that we can coherently split and recombine a Bose–Einstein condensate with good phase stability

    Pyramidal micromirrors for microsystems and atom chips

    Get PDF
    Concave pyramids are created in the (100) surface of a silicon wafer by anisotropic etching in potassium hydroxide. High quality micromirrors are then formed by sputtering gold onto the smooth silicon (111) faces of the pyramids. These mirrors show great promise as high quality optical devices suitable for integration into micro-optoelectromechanical systems and atom chips. We have shown that structures of this shape can be used to laser-cool and hold atoms in a magneto-optical trap

    Tailoring the thermal Casimir force with graphene

    Get PDF
    The Casimir interaction is omnipresent source of forces at small separations between bodies, which is difficult to change by varying external conditions. Here we show that graphene interacting with a metal can have the best known force contrast to the temperature and the Fermi level variations. In the distance range 50–300 nm the force is measurable and can vary a few times for graphene with a bandgap much larger than the temperature. In this distance range the main part of the force is due to the thermal fluctuations. We discuss also graphene on a dielectric membrane as a technologically robust configuration

    Fabrication of magnetooptical atom traps on a chip

    No full text
    Ultracold atoms can be manipulated using microfabricated devices known as atom chips. These have significant potential for applications in sensing, metrology, and quantum information processing. To date, the chips are loaded by transfer of atoms from an external macroscopic magnetooptical trap (MOT) into microscopic traps on the chip. This transfer involves a series of steps, which complicate the experimental procedure and lead to atom losses. In this paper, we present a design for integrating a MOT into a silicon wafer by combining a concave pyramidal mirror with a square wire loop. We describe how an array of such traps has been fabricated, and we present magnetic, thermal, and optical properties of the chip
    corecore