100 research outputs found

    Ultra-fast X-ray particle velocimetry measurements within an abrasive water jet

    Get PDF
    Ultra-fast X-ray velocimetry measurements were taken to measure velocities and spatial positions of individual abrasive particles within the solid-liquid-gaseous three-phase flow of a high-pressure injection method-based abrasive water jet (AWJ). A synchrotron X-ray source provided sufficient photon flux to take double-frame images of the AWJ with an inter-frame time interval of 5μs. Abrasive particles with a Sauter mean diameter of 265.5μm were detected by a scintillator optically coupled to a gated image intensifier and a high-speed camera running at a frame rate of 11,250Hz. A commercially available particle tracking velocimetry software was used to process the acquired images and evaluate the spatial positions and velocities of abrasive particles as a function of water pressure and abrasive mass flow. The acquired data show a Gaussian radial distribution of abrasive particles within the AWJ and an almost uniform mean axial velocity, irrespective of water jet velocity and abrasive flow rates. These results are useful to validate theoretical models for the momentum/energy transfer in AWJ, to provide input for abrasion/erosion models, to further understand and advance the AWJ process, and to develop new process opportunities such as AWJ millin

    Three-dimensional foam flow resolved by fast X-ray tomographic microscopy

    Get PDF
    Thanks to ultra fast and high resolution X-ray tomography, we managed to capture the evolution of the local structure of the bubble network of a 3D foam flowing around a sphere. As for the 2D foam flow around a circular obstacle, we observed an axisymmetric velocity field with a recirculation zone, and indications of a negative wake downstream the obstacle. The bubble deformations, quantified by a shape tensor, are smaller than in 2D, due to a purely 3D feature: the azimuthal bubble shape variation. Moreover, we were able to detect plastic rearrangements, characterized by the neighbor-swapping of four bubbles. Their spatial structure suggest that rearrangements are triggered when films faces get smaller than a characteristic area.Comment: 5 pages, 5 figure

    Real time tomography at the Swiss light source

    Full text link
    The penetrating power of X-rays coupled with the high flux of 3rd generation synchrotron sources makes X-ray tomography to excel among fast imaging methods . To exploit this asset of synchrotron sources is the motivation for setting up an ultra-fast tomography endstation at the TOMCAT beamline. The state of the art instruments at synchrotron sources offer routinely a temporal resolution of tens of seconds in tomography. For a number of applications, for example biomedical studies, the relevant time scales (breathing, heartbeat) are rather in the range of 0.5–2 seconds. To overcome motion artifacts when imaging such systems a new ultra-fast tomographic data acquisition scheme is being developed at the TOMCAT beamline. We can acquire a full set of projections at sub-second timescale in monochromatic or white-beam configuration. We present a feasibility study with the ultimate aim to achieve sub-second temporal resolution in 3D without significant deterioration of the spatial resolution. For the first time, the 3D dynamics of the very early stages of a quickly aging liquid foam can be visualised with high quality and sufficiently large field of view. ©2010 American Institute of Physic

    Fast Synchrotron X Ray Tomography of Dynamic Processes in Liquid Aluminium Alloy Foam

    Get PDF
    Series of fast synchrotron X ray tomographies are taken continuously at a rate of up to 5 Hz, while aluminium alloy precursors are foamed in an X ray transparent setup for several minutes using infrared IR lasers for heating. The entire foaming process from the solid precursor to the expanded liquid foam is captured. The analysis of the sequence of tomographies is done with an emphasis on nucleation and bubble growth. In early stages of foaming, bubble and crack formation and evolution are observed. We analyze the nucleation stage and obtain quantitative results for the number of nucleation centers and their distribution and derive the nucleation rate as a function of tim

    Structural formation during bread baking in a combined microwave-convective oven determined by sub-second in-situ synchrotron X-ray microtomography

    Get PDF
    A new concept has been developed for characterizing the real-time evolution of the three-dimensional pore and lamella microstructure of bread during baking using synchrotron X-ray microtomography (SR\ub5CT). A commercial, combined microwave-convective oven was modified and installed at the TOMCAT synchrotron tomography beamline at the Swiss Light Source (SLS), to capture the 3D dough-to-bread structural development in-situ at the micrometer scale with an acquisition time of 400 ms. This allowed characterization and quantitative comparison of three baking technologies: (1) convective heating, (2) microwave heating, and (3) a combination of convective and microwave heating. A workflow for automatic batchwise image processing and analysis of 3D bread structures (1530 analyzed volumes in total) was established for porosity, individual pore volume, elongation, coordination number and local wall thickness, which allowed for evaluation of the impact of baking technology on the bread structure evolution. The results showed that the porosity, mean pore volume and mean coordination number increase with time and that the mean local cell wall thickness decreases with time. Small and more isolated pores are connecting with larger and already more connected pores as function of time. Clear dependencies are established during the whole baking process between the mean pore volume and porosity, and between the mean local wall thickness and the mean coordination number. This technique opens new opportunities for understanding the mechanisms governing the structural changes during baking and discern the parameters controlling the final bread quality

    Micro-Scale Restraint Methodology for Humidity Induced Swelling Investigated by Phase Contrast X-Ray Tomography

    Get PDF
    A new methodology for restraining the swelling of spruce wood samples in the micrometre range is developed and presented. We show that the restraining device successfully prevents the free swelling of wood during moisture adsorption, thus modifying significantly the anisotropy of swelling and provoking the intended collapse and large deformations of the wood cells at the edges of the sample in contact with the restraining device. The device consists in a slotted cube designed to restrain swelling and is made of PMMA manufactured by laser ablation. The sample undergoing the restraining experiment is imaged with high-resolution synchrotron radiation phase contrast X-Ray Tomographic Microscopy. The deformation of the restraining device itself is only approximately 2μm with respect to a 500μm width in cubes containing latewood samples and half of that in the case of cubes containing earlywood

    Hard X-ray stereographic microscopy for single-shot differential phase imaging

    Get PDF
    The characterisation of fast phenomena at the microscopic scale is required for the understanding of catastrophic responses of materials to loads and shocks, the processing of materials by optical or mechanical means, the processes involved in many key technologies such as additive manufacturing and microfluidics, and the mixing of fuels in combustion. Such processes are usually stochastic in nature and occur within the opaque interior volumes of materials or samples, with complex dynamics that evolve in all three dimensions at speeds exceeding many meters per second. There is therefore a need for the ability to record three-dimensional X-ray movies of irreversible processes with resolutions of micrometers and frame rates of microseconds. Here we demonstrate a method to achieve this by recording a stereo phase-contrast image pair in a single exposure. The two images are combined computationally to reconstruct a 3D model of the object. The method is extendable to more than two simultaneous views. When combined with megahertz pulse trains of X-ray free-electron lasers (XFELs) it will be possible to create movies able to resolve 3D trajectories with velocities of kilometers per second

    In Vivo Time- Resolved Microtomography Reveals the Mechanics of the Blowfly Flight Motor

    Get PDF
    Dipteran flies are amongst the smallest and most agile of flying animals. Their wings are driven indirectly by large power muscles, which cause cyclical deformations of the thorax that are amplified through the intricate wing hinge. Asymmetric flight manoeuvres are controlled by 13 pairs of steering muscles acting directly on the wing articulations. Collectively the steering muscles account for <3% of total flight muscle mass, raising the question of how they can modulate the vastly greater output of the power muscles during manoeuvres. Here we present the results of a synchrotron-based study performing micrometre-resolution, time-resolved microtomography on the 145 Hz wingbeat of blowflies. These data represent the first four-dimensional visualizations of an organism's internal movements on sub-millisecond and micrometre scales. This technique allows us to visualize and measure the three-dimensional movements of five of the largest steering muscles, and to place these in the context of the deforming thoracic mechanism that the muscles actuate. Our visualizations show that the steering muscles operate through a diverse range of nonlinear mechanisms, revealing several unexpected features that could not have been identified using any other technique. The tendons of some steering muscles buckle on every wingbeat to accommodate high amplitude movements of the wing hinge. Other steering muscles absorb kinetic energy from an oscillating control linkage, which rotates at low wingbeat amplitude but translates at high wingbeat amplitude. Kinetic energy is distributed differently in these two modes of oscillation, which may play a role in asymmetric power management during flight control. Structural flexibility is known to be important to the aerodynamic efficiency of insect wings, and to the function of their indirect power muscles. We show that it is integral also to the operation of the steering muscles, and so to the functional flexibility of the insect flight motor
    corecore