7 research outputs found

    Numerical investigation of the nanoparticles nature effect on the MHD behavior in a square cavity with a metallic obstacle

    Get PDF
    In this paper, a study is conducted to determine numerically the effect of the nanoparticles nature (Al2O3, CuO, and Fe3O4) on the thermo-magnetohydrodynamic behavior of a nanofluid in a square cavity with a circular obstacle. The left wall of this cavity is movable and provided with a cold temperature (Tc) and the right wall is exposed to a hot temperature (Th). However, the upper and lower walls are considered adiabatic. The purpose of this paper is to highlight the effect of aluminum dioxide, copper oxide, and iron trioxide nanoparticles on the thermal and hydrodynamic behavior under the influence of different volume fractions(0 ≤ φ ≤ 0.1), different Hartmann numbers (0 ≤ Ha ≤ 75) and Richardson number (0 ≤ Ri ≤5). The system of governing équations was solved by the finite element method adopting the Galerkine discretization. The obtained results showed that the CuO nanoparticles improve the heat transfer at the fluid and obstacle, in addition, the increase of Hartmann number reduces the heat capacity, especially with the use of Fe3O4 nanoparticles. This study falls within the context of improving the cooling rate of industrial equipment.

    Effect of the wavy tank wall on the characteristics of mechanical agitation in the presence of a Al2O3-water nanofluid

    Get PDF
    The enhancement of the heat transfer in the stirred tank is a much-desired objective for accelerating certain physical and chemical parameters in the industrial field. From this basis, an attempt is made in this paper to investigate the effect of the wavy wall of a stirred tank on the hydrodynamic, thermal, and energetic behavior of an Al2O3-Water nanofluid. The stirred tank has a flat bottom, and it is equipped with an anchor stirrer. A hot temperature has been imposed on the tank wall, and the agitator has been assumed adiabatic, where the nanofluid has a cold temperature at the initial instant. The laminar flow was governed by the equations that describe the forced convection, and it was solved by the finite element method. The numerical simulation results showed a considerable acceleration in the heat transfer inside the stirred tank by increasing the amplitude of the wavy wall and increasing the nanoparticle concentration. However, there has been a remarkable increase in the stirring power number. This contribution aims to increase thermal efficiency, especially in the chemical and petrochemical fields, to obtain a better yield of certain chemical reactions and mass transfer depending on the heat

    Theoretical and Numerical Study on Buongiorno’s Model with a Couette Flow of a Nanofluid in a Channel with an Embedded Cavity

    Get PDF
    In the present paper, the fluid flow and heat transfer of a nanofluid are numerically investigated. More specifically, reference is made to a nanofluid, described by means of Buongiorno’s model, subjected to Couette flow. The considered domain consists of a channel that displays a cavity shortly after the inlet section. The transport model for the nanofluid, that is the mass conservation, momentum, and nanoparticles equation, is written in a dimensionless form and solved by employing the software package Comsol Multiphysics. Many ideas emerged from this work: the visualization of the velocity stream function, the dimensionless temperature, and nanoparticle concentration fields are provided, as a function of the governing parameters: Reynolds, Peclet, Lewis, Brownian diffusivity number, and thermophoretic diffusivity number. Concerning the nanofluid typical effects, the thermophoretic diffusion seems to affect the solution much more than the Brownian diffusion. The Nusselt number on the upper wall is calculated as well, and the results show that it proves to be, in most of the considered cases, an increasing function of the Reynolds number. Moreover, concerning the Nusselt number, the Brownian diffusion effects are shown to be negligible

    Effect of an Inclined Slots on the Power Consumption and Vortices Size in a Rushton Turbine Agitated Tank

    No full text
    Abstract Mechanical agitation in baffled vessels with turbines plays a vital role in achieving homogeneous fluid mixing and promoting various transfer operations. Therefore, designing vessels with optimal energy efficiency and flow dynamics is essential to enhance operational performance and eliminate flow perturbations. Hence, the present research focuses on a numerical investigation of the impact of inclined slots with different angles installed at the sidewall of a cylindrical vessel equipped with a Rushton turbine. This study explores power consumption and vortex size while considering various rotation directions of the impeller with different rotation speeds. The numerical simulations are conducted for Reynolds numbers ranging from 104 to 105, using the RANS k-ε turbulence model to govern the flow inside the stirred vessel, accounting for mass and momentum balances. The results have shown that the installation of slots reduces power consumption and vortex size compared to conventional vessel configurations. Moreover, increasing the slot angle from 0 to 32.5° further reduces energy consumption and vortex size, especially with negative rotation speeds. On the other hand, increasing the Reynolds numbers leads to a decrease in power consumption and an increase in vortex size. The present research therefore proposes a design for constructing Rushton-turbine stirred vessels offering optimal operation, characterized by reduced energy consumption and minimized vortex size

    MHD forced convection using ferrofluid over a backward facing step containing a finned cylinder

    No full text
    In this paper, a numerical study of forced convection on a backward facing step containing a single-finned fixed cylinder has been performed, using a ferrofluid and external magnetic field with different inclinations. The partial differential equations, which determine the conservation equations for mass, momentum and energy, were solved using the finite element scheme based on Galerkin’s method. The analysis of heat transfer characteristics by forced convection was made by taking different values of the Reynolds number (Re between 10 and 100), Hartmann number (Ha between 0 and 100), nanoparticles concentration (φ between 0 and 0.1) and magnetic field inclination (γ between 0° and 90°); also, several fin positions α [0°–180°] were taken in the counter clockwise direction by a step of 5. After analysing the results, we concluded that Hartmann number, nanoparticles concentration, Reynolds number and magnetic field angles have an influence on the heat transfer rate. However, the fin position on the cylinder has a big impact on the Nusselt number and therefore on heat transfer quality. The best position of the fin is at (α = 150°), which gives the best Nusselt number and therefore the best heat trans-fer, but the fin position at (α = 0°) remains an unfavourable case that gives the lowest Nusselt values

    Vpliv kota ukrivljenosti v kanalu z adiabatnim valjem nad nazaj obrnjeno stopnico na magnetohidrodinamično obnašanje ob prisotnosti nanofluida

    Full text link
    A backward facing duct are present in various industrial applications especially those focused on heat transfer. The flow through a curved backward facing duct especially in the presence of nanofluid presents complexities compared to a straight backward facing step (BFS) duct. Therefore, the present numerical study deals a nanofluid flow (Fe3O4-H2O) forced convection in a curved backward facing duct. The objective of this investigation is to visualize at different curvature angles g (0°, 30°, 45°, 60°, 90°) imposed on the top wall of the duct, the effect of Hartmann number Ha (0, 50, 100), magnetic field inclination angle γ (0°, 60°, 90°), Reynolds number Re (10, 100, 200) and nanoparticle volume fraction φ (0 %, 0.05 %, 0.1 %). The dimensionless governing equations are solved using the multigrid finite element method. The results showed that the heat transfer was enhanced at the curved angle g = 90° for large Hartman numbers, thus, the average Nusselt number increased with a ratio of 240.74 % in the case of Hartmann number (Ha = 100)

    Magnetic and Thermal Behavior of a Planar Toroidal Transformer

    No full text
    This paper presents a study on the magnetic and thermal behaviors of a planar toroidal transformer, comprising two planar toroidal coils. In our configuration, the primary coil consists of twenty turns, while the secondary coil consists of ten turns. This design combines the advantages of both toroidal and planar transformers: it employs flat coils, akin to those utilized in planar transformers, while retaining a toroidal shape for its magnetic core. This combination enables leveraging the distinctive characteristics of both transformer types. This study delves into electromagnetic and thermal behaviors. Electromagnetic behavior is elucidated through Maxwell’s equations, offering insights into the distribution of magnetic fields, potentials, and electric current densities. Fluid flow is modeled via the Navier–Stokes equations. By coupling these equation sets, a more comprehensive and accurate portrayal of the thermal phenomena surrounding electrical equipment is attained. Such research is invaluable in the design and optimization of electrical systems, empowering engineers to forecast and manage thermal effects more efficiently. Consequently, this aids in enhancing the reliability, durability, and performance optimization of electrical equipment. The mathematical model was solved using the finite element method integrated into the COMSOL Multiphysics software v. 6.0. The COMSOL Multiphysics simulation showed correct behavior of potential, electric field, current density, and uniformly distributed temperature. In addition, this planar toroidal coil transformer model offers many advantages, such as small dimensions, high resonance frequency, and high operating reliability. This study made it possible to identify the range of its optimal functioning
    corecore