194 research outputs found

    The capacity of refugia for conservation planning under climate change

    Get PDF
    Refugia – areas that may facilitate the persistence of species during large-scale, long-term climatic change – are increasingly important for conservation planning. There are many methods for identifying refugia, but the ability to quantify their potential for facilitating species persistence (ie their β€œcapacity”) remains elusive. We propose a flexible framework for prioritizing future refugia, based on their capacity. This framework can be applied through various modeling approaches and consists of three steps: (1) definition of scope, scale, and resolution; (2) identification and quantification; and (3) prioritization for conservation. Capacity is quantified by multiple indicators, including environmental stability, microclimatic heterogeneity, size, and accessibility of the refugium. Using an integrated, semi-mechanistic modeling technique, we illustrate how this approach can be implemented to identify refugia for the plant diversity of Tasmania, Australia. The highest- capacity climate-change refugia were found primarily in cool, wet, and topographically complex environments, several of which we identify as high priorities for biodiversity conservation and management

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Defining the functional traits that drive bacterial decomposer community productivity

    Get PDF
    Microbial communities are essential to a wide range of ecologically and industrially important processes. To control or predict how these communities function, we require a better understanding of the factors which influence microbial community productivity. Here, we combine functional resource use assays with a biodiversity–ecosystem functioning (BEF) experiment to determine whether the functional traits of constituent species can be used to predict community productivity. We quantified the abilities of 12 bacterial species to metabolise components of lignocellulose and then assembled these species into communities of varying diversity and composition to measure their productivity growing on lignocellulose, a complex natural substrate. A positive relationship between diversity and community productivity was caused by a selection effect whereby more diverse communities were more likely to contain two species that significantly improved community productivity. Analysis of functional traits revealed that the observed selection effect was primarily driven by the abilities of these species to degrade Ξ²-glucan. Our results indicate that by identifying the key functional traits underlying microbial community productivity we could improve industrial bioprocessing of complex natural substrates

    Plant Identity Influences Decomposition through More Than One Mechanism

    Get PDF
    Plant litter decomposition is a critical ecosystem process representing a major pathway for carbon flux, but little is known about how it is affected by changes in plant composition and diversity. Single plant functional groups (graminoids, legumes, non-leguminous forbs) were removed from a grassland in northern Canada to examine the impacts of functional group identity on decomposition. Removals were conducted within two different environmental contexts (fertilization and fungicide application) to examine the context-dependency of these identity effects. We examined two different mechanisms by which the loss of plant functional groups may impact decomposition: effects of the living plant community on the decomposition microenvironment, and changes in the species composition of the decomposing litter, as well as the interaction between these mechanisms. We show that the identity of the plant functional group removed affects decomposition through both mechanisms. Removal of both graminoids and forbs slowed decomposition through changes in the decomposition microenvironment. We found non-additive effects of litter mixing, with both the direction and identity of the functional group responsible depending on year; in 2004 graminoids positively influenced decomposition whereas in 2006 forbs negatively influenced decomposition rate. Although these two mechanisms act independently, their effects may be additive if both mechanisms are considered simultaneously. It is essential to understand the variety of mechanisms through which even a single ecosystem property is affected if we are to predict the future consequences of biodiversity loss

    The effect of parental rearing conditions on offspring life history in Anopheles stephensi

    Get PDF
    Background The environmental conditions experienced by parents are increasingly recognized to impact the success of offspring. Little is known on the presence of such parental effects in Anopheles. If present, parental effects could influence mosquito breeding programmes, some malaria control measures and have epidemiological and evolutionary consequences. Methods The presence of parental effects on offspring emergence time, size, survival, blood meal size and fecundity in laboratory reared An. stephensi were tested. Results Parental rearing conditions did not influence the time taken for offspring to emerge, or their size or survival as adults. However, parental effects were influential in determining the fecundity of daughters. Counter-intuitively, daughters of parents reared in low food conditions produced larger egg clutches than daughters of parents reared in high food conditions. Offspring reared in low food conditions took larger blood meals if their parents had also experienced a low food environment. Conclusion So far as we are aware, this is the first evidence of parental effects on progeny in Anophele

    Comparison of Life History Characteristics of the Genetically Modified OX513A Line and a Wild Type Strain of Aedes aegypti

    Get PDF
    The idea of implementing genetics-based insect control strategies modelled on the traditional SIT (Sterile Insect Technique), such as RIDL (Release of Insects carrying a Dominant Lethal), is becoming increasingly popular. In this paper, we compare a genetically modified line of Aedes aegypti carrying a tetracycline repressible, lethal positive feedback system (OX513A) with a genetically similar, unmodified counterpart and their respective responses to increasing larval rearing density using a constant amount of food per larva. The parameters that we examined were larval mortality, developmental rate (i.e., time to pupation), adult size and longevity

    DNAzyme Hybridization, Cleavage, Degradation and Sensing in Undiluted Human Blood Serum

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Analytical Chemistry, copyright Β© American Chemical Society after peer review and technical editing by publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.analchem.5b00220.RNA-cleaving DNAzymes provide a unique platform for developing biosensors. However, a majority of the work has been performed in clean buffer solutions, while the activity of some important DNAzymes in biological sample matrices is still under debate. Two RNA-cleaving DNAzymes (17E and 10-23) are the most widely used. In this work, we carefully studied a few key aspects of the 17E DNAzyme in human blood serum, including hybridization, cleavage activity, and degradation kinetics. Since direct fluorescence monitoring is difficult due to the opacity of serum, denaturing and nondenaturing gel electrophoresis were combined for studying the interaction between serum proteins and DNAzymes. The 17E DNAzyme retains its activity in 90% human blood serum with a cleavage rate of 0.04 min–1, which is similar to that in the PBS buffer (0.06 min–1) with a similar ionic strength. The activity in serum can be accelerated to 0.3 min–1 with an additional 10 mM Ca2+. As compared to 17E, the 10-23 DNAzyme produces negligible cleavage in serum. Degradation of both the substrate and the DNAzyme strand is very slow in serum, especially at room temperature. Degradation occurs mainly at the fluorophore label (linked to DNA via an amide bond) instead of the DNA phosphodiester bonds. Serum proteins can bind more tightly to the 17E DNAzyme complex than to the single-stranded substrate or enzyme. The 17E DNAzyme hybridizes extremely fast in serum. With this understanding, the detection of DNA using the 17E DNAzyme is demonstrated in serum.University of Waterloo || Natural Sciences and Engineering Research Council || Foundation for Shenghua Scholar of Central South University|| National Natural Science Foundation of China || Grant No. 21301195 Fellowship from the China Scholarship Council || CSC, Grant No. 20140637011

    Using Phylogenetic, Functional and Trait Diversity to Understand Patterns of Plant Community Productivity

    Get PDF
    BACKGROUND:Two decades of research showing that increasing plant diversity results in greater community productivity has been predicated on greater functional diversity allowing access to more of the total available resources. Thus, understanding phenotypic attributes that allow species to partition resources is fundamentally important to explaining diversity-productivity relationships. METHODOLOGY/PRINCIPAL FINDINGS:Here we use data from a long-term experiment (Cedar Creek, MN) and compare the extent to which productivity is explained by seven types of community metrics of functional variation: 1) species richness, 2) variation in 10 individual traits, 3) functional group richness, 4) a distance-based measure of functional diversity, 5) a hierarchical multivariate clustering method, 6) a nonmetric multidimensional scaling approach, and 7) a phylogenetic diversity measure, summing phylogenetic branch lengths connecting community members together and may be a surrogate for ecological differences. Although most of these diversity measures provided significant explanations of variation in productivity, the presence of a nitrogen fixer and phylogenetic diversity were the two best explanatory variables. Further, a statistical model that included the presence of a nitrogen fixer, seed weight and phylogenetic diversity was a better explanation of community productivity than other models. CONCLUSIONS:Evolutionary relationships among species appear to explain patterns of grassland productivity. Further, these results reveal that functional differences among species involve a complex suite of traits and that perhaps phylogenetic relationships provide a better measure of the diversity among species that contributes to productivity than individual or small groups of traits
    • …
    corecore