7 research outputs found

    Cross pathogenicity of Neofusicoccum australe and Neofusicoccum stellenboschiana on grapevine and selected fruit and ornamental trees

    Full text link
    [EN] Neofusicoccum australe is one of the most important Botryosphaeriaceae pathogens occurring on fruit and vine crops. This fungus was recently taxonomically reassessed, identifying N. stellenboschiana as a separate species. Previous pathogenicity studies used N. stellenboschiana and N. australe isolates as N. australe, so assessment of the pathogenicity of these two species on grapevine and other hosts was required. A pathogenicity trial was conducted on detached shoots of grapevine, plum, apple, olive and Peruvian pepper tree. Shoots were individually inoculated with 11 N. australe and eight N. stellenboschiana isolates originally isolated from grapevine, plum, apple, olive, Peruvian pepper and fig. Both species formed lesions on all five hosts and were reisolated 5 weeks post-inoculation. In general, the largest lesions were formed on plum and smallest on Peruvian pepper. Isolate host origin did not influence ability to cause lesions on other hosts. Isolates of N. australe and N. stellenboschiana differed in virulence on the various hosts, ranging from those that caused the largest lesions, a group causing intermediate lesions, and another causing lesions similar to uninoculated controls. The study demonstrates that N. australe and N. stellenboschiana isolates originating from various fruit hosts can infect alternative hosts including grapevine and other major fruit crops.This research developed from a mobility sojourn funded by the Erasmus Mundus Joint Master Degrees Programme of the European Commission under the PLANT HEALTH Project. The authors also acknowledge financial support from ARC Infruitec-Nietvoorbij and the National Research Foundation of South Africa (NRF UID88771). Technical Assistance was provided by Carine Vermeulen, Danie Marais, Julia Marais, Muriel Knipe, Lydia Maart, Christopher Paulse, Bongiwe Sokwaliwa, Nadeen van Kervel, and Levocia Williams (Plant Protection Division, ARC Infruitec-Nietvoorbij).Mojeremane, K.; Lebenya, P.; Du Plessis, IL.; Van Der Rijst, M.; Mostert, L.; Armengol FortĂ­, J.; Halleen, F. (2020). Cross pathogenicity of Neofusicoccum australe and Neofusicoccum stellenboschiana on grapevine and selected fruit and ornamental trees. PHYTOPATHOLOGIA MEDITERRANEA. 59(3):581-593. https://doi.org/10.14601/Phyto-11609S58159359

    Effects of site preparation for afforestation on methane fluxes at Harwood Forest, NE England

    No full text

    Greenhouse gas emissions in response to nitrogen fertilization in managed forest ecosystems

    No full text

    Conservation agriculture and climate change

    No full text
    This chapter review aims at developing a clear understanding of the impacts and benefits of conservation agriculture (CA) with respect to climate change, and examining if there are any misleading findings at present in the scientific literature. Most of the world’s agricultural soils have been depleted of organic matter and soil health over the years under tillage-based agriculture (TA), compared with their state under natural vegetation. This degradation process can be reversed and this chapter identifies the conditions that can lead to increase in soil organic matter content and improvement in soil health under CA practices which involve minimum soil disturbance, maintenance of soil cover, and crop diversity. The chapter also discusses the need to refer to specific carbon pools when addressing carbon sequestration, as each carbon category has a different turnover rate. With respect to greenhouse gas emissions, sustainable agricultural systems based on CA principles are described which result in lower emissions from farm operations as well as from machinery manufacturing processes, and that also help to reduce fertilizer use. This chapter describes that terrestrial carbon sequestration efficiently be achieved by changing the management of agricultural lands from high soil disturbance, as TA practices to low disturbance, as CA practices, and by adopting effective nitrogen management practices to provide a positive nitrogen balance for carbon sequestration. However, full advantages of CA in terms of carbon sequestration can usually be observed only in the medium to longer term when CA practices and associated carbon sequestration processes in the soil are well established

    Conservation Agriculture and Climate Change

    No full text
    corecore