151 research outputs found

    Magnetometric Studies of Catalyst Refuses in Nanocarbon Materials

    Get PDF
    It is shown that magnetometry can be employed as an effective tool to control the content of a ferromagnetic constituent in nanocarbon materials. We propose a thermochemical treatment protocol to achieve extensive cleaning of the source nanocarbon materials from ferromagnetic refuses

    Graphene -- Based Nanocomposites as Highly Efficient Thermal Interface Materials

    Full text link
    We found that an optimized mixture of graphene and multilayer graphene - produced by the high-yield inexpensive liquid-phase-exfoliation technique - can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The "laser flash" measurements revealed a record-high enhancement of K by 2300 % in the graphene-based polymer at the filler loading fraction f =10 vol. %. It was determined that a relatively high concentration of single-layer and bilayer graphene flakes (~10-15%) present simultaneously with thicker multilayers of large lateral size (~ 1 micrometer) were essential for the observed unusual K enhancement. The thermal conductivity of a commercial thermal grease was increased from an initial value of ~5.8 W/mK to K=14 W/mK at the small loading f=2%, which preserved all mechanical properties of the hybrid. Our modeling results suggest that graphene - multilayer graphene nanocomposite used as the thermal interface material outperforms those with carbon nanotubes or metal nanoparticles owing to graphene's aspect ratio and lower Kapitza resistance at the graphene - matrix interface.Comment: 4 figure

    Single step process for the synthesis of carbon nanotubes and metal/alloy-filled multiwalled carbon nanotubes

    Get PDF
    A single-step approach for the synthesis of multi-walled nanotubes (MWNT) filled with nanowires of Ni/ternary Zr based hydrogen storage alloy has been illustrated. We also demonstrate the generation of CO-free hydrogen by methane decomposition over alloy hydride catalyst. The present work also highlights the formation of single-walled nanotubes (SWNT) and MWNTs at varying process conditions. These carbon nanostructures have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), Energy dispersive X-ray analysis (EDX) and Raman spectroscopy. This new approach overcomes the existing multi-step process limitation, with possible impact on the development of future fuel cell, nano-battery and hydrogen sensor technologies

    Spectroelectrochemistry at free-standing carbon nanotubes electrodes

    Get PDF
    A versatile and low-cost methodology for fabricating free-standing carbon nanotubes (CNT) electrodes for electrochemical and spectroelectrochemical applications is described. The uniformity, flexibility and resistance to bending of these films make them one of the most interesting membranes in a wide range of applications. CNT electrodes were characterized by Raman spectroscopy and scanning electron microscopy and their electrochemical performance was assessed employing various redox species such as ferrocenemethanol, hexacyanoferrate (II) and dopamine. Free-standing single-walled CNT electrodes exhibit good conductivity and transparency to UV–vis radiation, making them suitable as optically transparent electrodes. This is exemplified by monitoring, using UV–vis absorption spectroelectrochemistry, the electrodeposition of gold nanoparticles (AuNPs) on one face of the free-standing CNT electrodes, while the other face remained unmodifiedMinisterio de Economía y Competitividad (CTQ2014-55583-R, CTQ2014-61914-EXP, CTQ2015-71955-REDT) and Junta de Castilla y León (BU033U16)Ministerio de Economía y Competitividad (CTQ2014-55583-R, CTQ2014-61914-EXP, CTQ2015-71955-REDT) and Junta de Castilla y León (BU033U16

    The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes - A review

    No full text
    Recent progress in chemical vapour deposition and aerosol synthesis of single-walled carbon nanotubes (SWCNTs) is reviewed with an emphasis on the role of metal nanoparticles in the processes. The effect of the various parameters on SWCNT formation is reported on the basis of published experiments. Evolution of the catalyst particle size distribution due to collision, sintering and evaporation of metal during SWCNT synthesis is discussed. The active catalyst has been demonstrated to be in a reduced metal form by comparison of the experimental data and calculations regarding the equilibrium concentration of carbon and oxygen in iron. Also the effect of the catalyst particle size on melting temperature and carbon solubility in metal is discussed. The stability of different carbon precursors (hydrocarbons and carbon monoxide) is considered thermodynamically. Furthermore, estimation of the maximum length of 1 and 2.5 nm diameter SWCNTs as a function of carbon solubility is conducted to determine whether carbon dissolution and precipitation are simultaneous or subsequent process steps

    Carbon nanotubes and onions from carbon monoxide using Ni(acac) <inf>2</inf> and Cu(acac)<inf>2</inf> as catalyst precursors

    No full text
    New catalyst precursors (copper and nickel acetylacetonates) have been used successfully for the synthesis of carbon nanotubes and onion particles from carbon monoxide. Catalyst nanoparticles and carbon products were produced by metal-organic precursor vapour decomposition and catalytic disproportionation of carbon monoxide in a laminar flow reactor at temperatures between 705 and 1216°C. Carbon nanotubes (CNTs) were formed in the presence of nickel particles at 923-1216°C. The CNTs were single-walled, 1-3 nm in diameter and up to 90 nm long. Hollow carbon onion particles (COPs) were produced in the presence of copper particles at 1216°C. The COPs were from 5 to 30 nm in diameter and consisted of several concentric carbon layers surrounding a hollow core. The results of computational fluid dynamics calculations to determine the temperature and velocity profiles and mixing conditions of the species in the reactor are presented. The mechanisms for the formation of both CNTs and COPs are discussed on the basis of the experimental and computational results. © Elsevier Ltd. All rights reserved

    Carbon nanotube synthesis from alcohols by a novel aerosol method

    No full text
    Single- and multiwalled carbon nanotubes (CNTs) were synthesised by a novel aerosol method using alcohols, namely ethanol and octanol, as carbon precursors. Preformed iron and nickel aerosol nanoparticles, produced by evaporation from resistively heated metal wire, were used as catalysts. Multiwalled CNTs were initiated by 10 nm sized catalyst particles and produced in the presence of ethanol vapour with the partial pressure of 7072 Pa, while combination of 2.4 nm particles and decreased alcohol vapour pressure (123 Pa) resulted in the formation of mainly single-walled and a small fraction of double-walled CNTs. The effect of a promoter (thiophene) in the system was found to be very important for the synthesis of multiwalled CNTs, while only a 30% number concentration increase was found for the single-walled CNT production. © Springer 2006
    • …
    corecore