7,168 research outputs found

    Large eddy simulation of turbulent channel flow: ILLIAC 4 calculation

    Get PDF
    The three-dimensional time dependent equations of motion were numerically integrated for fully-developed turbulent channel flow. A large scale flow field was obtained directly from the solution of these equations, and small scale field motions were simulated through an eddy viscosity model. The calculations were carried out on the ILLIAC 4 computer. The computed flow patterns show that the wall layer consists of coherent structures of low speed and high speed streaks alternating in the spanwise direction. These structures were absent in the regions away from the wall. Hot spots, small localized regions of very large turbulent shear stress, were frequently observed. The profiles of the pressure velocity-gradient correlations show a significant transfer of energy from the normal to the spanwise component of turbulent kinetic energy in the immediate neighborhood of the wall ('the splatting effect')

    The structure of the vorticity field in turbulent channel flow. Part 1: Analysis of instantaneous fields and statistical correlations

    Get PDF
    An investigation into the existence of hairpin vortices in turbulent channel flow is conducted using a database generated by the large eddy simulation technique. It is shown that away from the wall the distribution of the inclination angle of vorticity vector attains its maximum at about 45 deg to the wall. Two point correlations of velocity and vorticity fluctuations strongly support a flow model consisting of vortical structures inclined at 45 deg to the wall. The instantaneous vorticity vectors plotted in planes inclined at 45 deg show that the flow contains an appreciable number of hairpins. Vortex lines are used to display the three dimensional structure of hairpins, which are shown to be generated from deformation of transverse vortex filaments

    Contributions of numerical simulation data bases to the physics, modeling and measurement of turbulence

    Get PDF
    The use of simulation data bases for the examination of turbulent flows is an effective research tool. Studies of the structure of turbulence have been hampered by the limited number of probes and the impossibility of measuring all desired quantities. Also, flow visualization is confined to the observation of passive markers with limited field of view and contamination caused by time-history effects. Computer flow fields are a new resource for turbulence research, providing all the instantaneous flow variables in three-dimensional space. Simulation data bases also provide much-needed information for phenomenological turbulence modeling. Three dimensional velocity and pressure fields from direct simulations can be used to compute all the terms in the transport equations for the Reynolds stresses and the dissipation rate. However, only a few, geometrically simple flows have been computed by direct numerical simulation, and the inventory of simulation does not fully address the current modeling needs in complex turbulent flows. The availability of three-dimensional flow fields also poses challenges in developing new techniques for their analysis, techniques based on experimental methods, some of which are used here for the analysis of direct-simulation data bases in studies of the mechanics of turbulent flows

    Numerical simulation of wall-bounded turbulent shear flows

    Get PDF
    Developments in three dimensional, time dependent numerical simulation of turbulent flows bounded by a wall are reviewed. Both direct and large eddy simulation techniques are considered within the same computational framework. The computational spatial grid requirements as dictated by the known structure of turbulent boundary layers are presented. The numerical methods currently in use are reviewed and some of the features of these algorithms, including spatial differencing and accuracy, time advancement, and data management are discussed. A selection of the results of the recent calculations of turbulent channel flow, including the effects of system rotation and transpiration on the flow are included

    Numerical investigation of turbulent channel flow

    Get PDF
    Fully developed turbulent channel flow was simulated numerically at Reynolds number 13800, based on centerline velocity and channel halt width. The large-scale flow field was obtained by directly integrating the filtered, three dimensional, time dependent, Navier-Stokes equations. The small-scale field motions were simulated through an eddy viscosity model. The calculations were carried out on the ILLIAC IV computer with up to 516,096 grid points. The computed flow field was used to study the statistical properties of the flow as well as its time dependent features. The agreement of the computed mean velocity profile, turbulence statistics, and detailed flow structures with experimental data is good. The resolvable portion of the statistical correlations appearing in the Reynolds stress equations are calculated. Particular attention is given to the examination of the flow structure in the vicinity of the wall
    corecore