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LARGE EDDY SIMULATION OF TURBULENT CHANKEL FLOW -
ILLIAC IV CALCULATION

John Kim* and Parviz Moin
Ares Rescarch Center, NASA, Moffett Field, California 94035, U.S.A.

SUMMARY

The three-dimensiona) time-dependent equatfons of motien have been numerically integrated for fully-
devaloped turbuient channe) flow. The Jarge-scate flow field fs obtained dfrectly from the solution of
these equations, and the smatl-scale field motiens are simulated throu?h an eddy viscos{ty model. The calcu-

latjons are carrfed out on the [LLIAG IV computer with €4 + 64 x 64 gr

d pofnts,

The computed flow patterns show that the wall layer consists of coherent structures of low-speed and
highespeed streaks alternating in the spanwise direction, These stru-tures were absent {n the reglons away
fram the wall, ot spots, smaj] localized regions of very large turbulent shear stress, are frequently
observed, Very close to the wall, these hot spots are associated with " > 0 and ¥ < 0 (sweep): away from

the wall, they are due to U < 0 and v > 0 (burst).

tions show a significant transfer of energy from the norma
energy 1n the frmediate nefghborfood of the wall ["the splatting effact”),

HOMENCLATURE

The qroffles of the pressure velocity-gradient corpela=-

to the spanwise component of turbulent kinetic

The overbar (™) denotos the f11tered component and the prime (') denotes subgrid scale (5GS) component.

Cg Smagorinsky's constant

Glx - x'} filter function

h1 mesh size in the {-direction
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k wave number B rky? F Kyl

k{ wave numb:r in the {-direction

Lx length ¢f the computatisnal box in the
x-direction

Lz length of the computationa) box in the
z-direction

) 565 length scale

N nutber of mesh paints in the y-direction

p pressure
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p Fourier transform of p

q root-mean-square velocity

Re Reynolds number based on channel half-
width and the centerline velocity

Re Reynolds number based on channel half-

T width and shear velocity
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S1J g5 (%EE + W strain rate tensor

t dimensfoniess time

u streamwise vetocity
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vetoctty 1n the {-direction
Foupier transform of ﬁi
shear velocity = V1o

velecity in the vertical direction
velocity #n the spanwise direction
streanwise coordinate

coordinate in the {-direction

coorcinate vector
coordinate in the direction normal to the walls
distance to the nearest wall
:\_"lll_‘1
v
spanwise coordinate

the completely antisymmetric tensor of rank 3

mean streak spacing

mean spacing of the turbulent structures in the
i-direction
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m

jth meshpoint in the vertical direction of the
transformed {uniform mesh) space

density

mean wall sherr stress

dimensionless time step
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v kinematic viscosity < » hprizontal average {x~z plane)
vy eddy viscosity < st time average
Subscripts

g vorticity in the 1-direction

vorticity 1n the x~direction W wall value

1 {=§ SGS  subgrid scale
o iy Superzepipt
n time step

1, INTRODUCTION

The technique of large eddy simulation (LES) 4s a relatively new method for computing turbulent flows.
The primsry motivatfon for 1ts undertaking is that the large eddy turbulence structures are clearly flow-
dependent (e.g,, jets vs boundary layars) and hence they are difticult if not impossible to model, On the
other hand, there s experimgnta) evidence {e.g,, Ref, 1) that small eddies are universal in character, and
consequently much more amenable to general madeling.

In LES, the jarge-scale motions are computed directly using three-dimensional time-dependent computa-
tion, and the small-scale motions are modeled, The dynamical equatiens for the large-scale field are
derived by averaging the Navier-Stokes equations over volumes {n space that are small compared to the overall
dimensions of the flow field. This averaging fs to provide sufficient smoothing of the flow varfables, so
they can be represented on a relatively coarse mesh, The resulting cquations for the large eddies contain
terms that involve small-scale turbulence. These vrerms are replaced by models that are to reprasent the
interaction between the resolved and wnresolved {subgrid scale, SG5) field motions.

One of the most extensive applications of LES has been to the problem of decay of homogeneous {satropic
turbulence {see Refs., 2-4), A variety of numerical mothods and subgrid-scale turbulence models was fngorpo-
rated to compute this flow, Both the pressure-velocity and the vorticity-stream function formulations of
the dynamjcal equations were used. These studfes have shown that homogencovs turbulent flows can be reason-
ably sfmulated using sfmple eddy-viscosity models,

The first application of LES was made by Deardorff (Ref. 5), who simulated a fully developed turbulent
channel flow at a very large Reynolds number. Utilizing a modest number of grid points (E,?ZU?. he showed
that three-dimensional mumerical simulation of turbuience (at least for simple flows) {s feasible, His
calculations predicted some of the features of turbulent channel flow with reasonable success and demon-
strated the potential of LES For prediction and analysis of turbulent flows.

Schumann (Ref, 6) has also performed aumerical simulation .F turbulent channel flow. In addition, he
has applied LES to cylindrica) geometries {annuli), Me used up to 10 times more grid points than Deardorff
and a much rmore complex subgrid-scale model. In that model, an additienal equatien For SGS turbulent kinetlc
enorgy was integrated. Hovever, the results showed no significant improvement ovar the case in which eddy-
viscosity models were used {Ref. 6).

In the caleulaticns of channel flow described above, no attempt was made to compute the flow in the
vicinity of the walls, A great portion of turbulent kinetic energy preduction takes place in this region
{se2 Ref, 7). Thercfore, by using artificial velocity boundary conditfons well beyond the viscous sublayer
and buffer layer, a significant fraction of the dymamics of turbulence in the entire flow was effectively
modeied. In addition, it should be noted that the boundary conditions wsed in the latter calewlations
assume that in the log layer, the velocity fluctuations are fn phase with the wall shear stress fluctuations.
This assumption 1s net supported by experimental measurements (Ref. 8).

Mofn et al. (Ref, 9) simulated the channel flow, ingluding the viscous regfon near the wall. The exact
no-s1ip boundary conditions were used at the walls. In their computations, only 16 uniformiy spaced grid
peints were used in each of the streamwise (x) and spanwise (z) directions and &5 nonuniformly spaced mesh
points were used in the y-divection. The arid resolution was espacially inadequate in the z-direction to
resolve the now well-known streaky structures in the vicinity of the wall. In spite of this, computations
aid display some of the well-established features of the wall regfon. In particular, the results showed
coherent structures of low-speed and high-speed fluid alternating i1 the visc.es region near the wall, though
not at thelr proper scale. The overall agreement of the computed moan-velocity profile and tyrbulent statis-
tics with experimental data was satisfactory.

Encouraged by the results of the above cearse calculatfon, the present numerical simulation of channal
flow with 262,144 grid points {64 x 64 = 64) was undertaken. The ILLIAC IV computer, a parallel processor,
was chesen for this purpose. Although the grid resolution in the spanwise direction is still not sufficient
for an adequate representatfon of the wall-layer streaks, 1t is a significant improvement over the earlier
calcu}ation. This, in turn, allows a nore realistic and compreheimive study of the structure and mechanics
of this flow,

This paper 1s the result of a work that s now in prggress and is essentially intended tp demonstrate
some of the capabilities of LES fn the prediction and analyses of wall-bounded turbulent shear flews. In
Sec. 2, the dymamical equations for large-scale field motfons are derived. The subgrid model that was used
is described in Sec, 3; Section 4 destribes the computational grid netwark and its relation to the cbserved
physical length scales in the flow. The ntmerical methed is briefly autlined in Sec, 5; the datz management
process 1s taken wp {n Sec. 6; and in Sec. 7, we exumine some aspects of the mechanics and structure of the
flow, both Tn the vicinity of the wall and in regfons away from the wall, and an attempt i5 made to correlate
numerical results with laboratory observations, In Sec. 8, we present the computed Flow statistics, which
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include the meansvelocity profile, turbulent intensfties, and turbulence shear stress. In that section, we
will point out sume of the deficiencies of the subgrid-scale model used and suggest improvements. Finally,
conclusions are presented In Se¢, 9.

2, GOVERNING EQUATIONS FOR THE LARGE-SCALE FIELD

s fof?gwgfrst step in LES 15 the definition of the large-stale field, Each flow varfable [ {s decomposed

f‘:?i-f‘ (”

Herp, the overbar denotes the large-scale or "f{jtered” field and the prime indicates the residual er “sub-
grid® field. Following Leonard {Ref, 10) we define the large-scale field as:

F(x) ~);s(1.5')f(ge_')dx' {2)

where G 1s the filter function and the integral is extended over the whole flaw fleld, In the horizental
planes (x=-2}, several possible choices for the filter functian are available. Unless otherwise stated, most
of the calculations reported here were carrfed out using a Gaussfan filter, G{x-x',z-z'). The width of the
Gaussian function characterizes the smallest seales of motion retained in the filtered field (the largest
scales in the resfdual fieid}. We assume that the filtering in the planes paralle) to the walls provides
sufficient smoothing in the vertica) directfons as well; our computations support this assumption, In addi-
tion, it should be noted that we use sccond-order finite difference schemes to approximate partia)l derivatives
in the xa-direction and such schemes hava ap implicit fi)tering effect associated with them, For further
detatls see Moln et al, (Ref, 8),

After applying the filtering oparation {Eq. (2)) to the incompressible Navier-Stokes and the continuity
equations, the governing equations for the filtered field may be written

3 R 320
-.—..!.- ":-3* __3_ 1 ._._.-_...1
FE T Cigk Ut " T Bt 8y T Yyt R R (3)
i J T Y
il
.a_x,;no (4)
where we have decompoz~d vy as in {1} and

w, T €0
ko Fpak Bxp

Ty % Ryt

T AR 4 T
Rid = Uy u‘1 + “j Ui+ uju1
ca B LET N L5 LT
P p+?u.‘luj €] =1p+2-ujuJ
Here, the variables are nondimensfonal using the channel half-width & and the shear velocity ur v /5 7p.
The calculations will be carried out for a fixed streamwise mean-pressure gradient which {s accounted for
by the &43 term In the momentum Eq. {3).
3. RESIDUAL STRESS MODEL

The remaining unknown quantity in Eq. {3) is 7. This termn represents the subgrid-scale stresses and
must be modeled. In the present calculations we have"used an eddy viscosity model,

TR 'E”Tsij (5a)
where
p foly o
Si3° 7 @q+59 (sb)

The small-scale eddy viscosity v1 represents the action of the unresolved scales of motion on the
resoived scales. MHence, as the reSuluIion gets better, vp should get smaller. This suggests that vy
should scale on a length scale 2 which is directly related to the computational resolution. The model
most commonly used for vr and the one we use here is the Smagorinsky model,

vp ® {C 2} EY {6)

wherg Cg = 0.1 (Ref; §) 1s a dimensionless constant and 2 1s a dimensionless representative of the grid
resolution, here assumed to be {Ref. 5):

2 v (b« haly) « hy)t/a (7)

e i et

e ol s 1
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This expression for ¢ f{s probably appropriate only for cases in which there is no stgnificant grid
anisotropy (Ref, 6), In the present calculation, the computational grid fs very elongated {hyyhy »= ha) tn
the vicinity of the walls, ard hence use of Eq. (?) is not strictly ?ustifind. However, to gafn a better
insight into the role of ¢ and to help guide fts selectfon in future calgulations, we have used Eq. (7)
with a modiffcation described below.

Hear the walls, the subgrid-scale turbulence Reynolds number, defined as
q 't

e (8)

Rsgs

Is very small, and hence one expects the value of the eddy viscosity coefficient to be very small, In our
caleuTations, we have found that the damping provided by the presence of (h {y)}¥?) 1in Eq. {7) 1s not suffi-
clent, and excessively large subgrid-scale stresses arp formed near the walf. Therefore, in the present
calculations we have muitiplied t (Eq. (7)) by an exponential damping function 1 - exp{-y'/50}),

The eddy-viscosity mode] used here is best rationalized for isotropic turbulence at the scale of the
computational grid. The fundamental assumption behind this model is that tha resolutfon scale 1ies within
an 1nertial range with the -5/3 power spectrum {Ref. IIA. It is clear that for the moderate Reynnlds number
(Rey = 640} that we are co.sldering and the nature of the grid volumes used, the above assumptfons are not
satisfied,  This is particularly true in the highly viscous region in the vicinity of the walls. Thus, the
present simtlation is viewed as a challenge to the eddy-viscosity mode] used,

A critical test for the Jarge eddy simulation technique 1s the prediction of the logarithmic layer
and the von Karman “"constant," This {s one of the reasons for not uEIIizing the mixing-length model in the
presant calculations to account for inhomo?eneity due to the mean shear (Ref. 6). Such a model s Known to
'postdict” the correct mean-velocity profile,

4, THE COMPUTATIONAL GRID

The avaflability of computer rescurces restricts the size of caleulations possible. For a given number
af orid points N, we have to choose the grid size(s) based on the known physical properties of turbutent
charmel flow under consideration.

In the vertical direction (-1 &y < 1), a nonuniforn grid spacing 1s used. The following transformation
gives the Tocatfon of grid points in the vertical direction (Ref, §):

¥y = % tanh [EJ tanh™1{a)) (9)
where
g valy - 2) (10)
J=12, ..., N
N Ts the total numbar of grid points in the y direction, and the adjustable parameter of transformation is a

G <a <1} Weused a = 0.98346, N = 64, This value of a was selected so that the above grid distribu-
fon in the y-directton s sufficient to resolve the viscous sublayer (y* < §),

re—

The length Ly and Lz of the computational box in the streamwise (x) and spanwise (z) direction, in
which periodic boundary conditions are used, should be long enough to Inciude the important large eddies
{Refs. 6, 12). Based on the two-point correlation measurements of Comte-Bellot (Ref. 13), we used Lx = n,
and Lz = 4n/3, MWe have usad 64 uniforwly spaced grid points in each of the streamyise and spanwise direc-
tions. With the above choices for Lx and Lz, the nondimens{onal grid spacings 1n the horizontal directions
expressed In the wall upits are:

h* =63
h3+ 2 42

In the wall region, the {mporta it large eddfes are the "streaks” (Ref. Y4). These have & mean spanwi se
spacing corresponding to A% = 100, [t is clear that our grid resclution in the spanwise direction 15 not
quite sufficient to resolve the strevks, This is ospecially true when we note that the above value for 1t
Is based on an ensemble of measuremonts, and at a given instant streaks with a finer spacing than At can
be {ormed. As we shall see, however, calculatjons did reveal these structures, though not at their proper
scale,

With relatively minor wodifications to the present computer program, we are able to perform calculations
with 64 = 64 = 128 grid pofnts ip the x, y, and z directions, respectively. It is oxpected that in this
simulation the spacing of the wall-layer streaks will be more in 1ine with the iaboratory observations.

5. NUMERICAL METHOD

A complete description of the numerical method used {s given in Ref. 15, Here, we give a brief outline
of tiie method and minor modifications that were made to enhance the data mand?oment process. The partial
derivatives in the x, direction ware approximated by second-order central difference formulae. In the
xy,and x3 directions, partial derivatives wore evaluated psewdospectrally (Ref. 16), HWith a given number of
grid points, the use of the pseudespectral method in any eiven direction g9ives us the best passible resolution
gn thiﬁ direction. This fs particularly useful in the x; direction where we face a lack of grid resolution

Sec, 4).
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Tine advancement 18 made using a semi-fmplicit method, Prossure, viscous terms, and part of the subgride
scale model are treated fmplicitly, whercas explieft time advancement s used for the remaining nonl{ineap
terms.  The equation of continulty i3 solved directly, Second-order Adams Bashforth (Ref, 17) and
Crank-Nicolson (Ref, 18) methods are used for explicit and fmplicit time advancement, respectively,

fiext, we Fourler transform the resulting equations in x, and xa directions. This converts the above
sot of partial differential equations to the following set ot ordinary differential equations for thn varlables
at FIE$ step o+ 1y for every pair of Fourler wave numbers kp and ks, with y = x; as the {ndependent
varfable,

2.0+

?’;‘5’? + oy = KA+ kg A5 50 e g (1)
’.i;-';; o -k g AL 0 (116)
32_‘2%;+ (83 = kDT + 1kyey 9™ = Q)" (1e)
ikl s 333-;-2+ ikt = 0 {11d)

Hera, oy (1 & 1,2,3) are known functions of Re; and ﬁurn>. and ;-" represent the terms involving the
velocity and pressure fleld at time-step o and n - 1 {see Ref, 15,

In addition to the use of implicit time advancemant for all the viscous terms, the algorithm used fn the
present study s different {0 one other respect from the one described in Ref. 15. For reasons that will be
explained {n the sext sectien, Egs. (11a) and (V) were mudtiplied by ik, and {ks, respectively. Thus, |
the dependent varfables for the time-advancement equations are ikyu, v, and ik rather than O, ¥, and .

The remaining steps fn the solution procedure are as follows. Finfte difference operators (described
above) ara used to approximate /sy and 22/3y¢. This glves a set of linear algebraic equations for the
Fourfer transform of dependent varlables, This system 15 of block tridiagonal form and can be solved very
efficiently, No-511p boundary conditions ave used at the solfd boundaries. Finally, inversion of the
Fourier transform gives the velocity and pressure field at time-step n + 1,

The inftial velocity field was the same as the one used in Ref, 9 Interpolated on the finer grid used
here,

6. DATA MANAGEMENT

Ia large simulations, the high-speed random-access memory of the camputer on hand may not hold the
enthra data base of the problem being ¢onsidered, In the present case, the core menory of the ILLIAC IV {s
large cnough to hold only a few planes of veloc{ty pressure field. Therefore, it is esseatial to manage the
flow of data efficiently between the core memory and the disk memory where the entire data base resfdes. 1In
general, separate passes over the data base are requlced for each time step and the task is to winimize the
r?qu=re? number of such passes. The following describes a data ssanagement process employed in the present
simulatian.

The system of Eq, (11} must be solved for both veal and imaginary parts of the dependent variajles,
This necessarily means that two passes through the data base ave required: one for real parts of vy and Uy
and imaginavy ports of &, and p, and the other for imaginary parts of i, and i3 and real parts of &y and p.

To aveid an extra pass through the dala base, we multiply Eqs, {11a) and (13e) by f{ky and ik, respec-
tively {Raf, 19), (These multiplications in Fourier space amount to difforentiations in recal space.)

a:j?‘l & {5y - KA - kalﬂl%fﬁ"+l = " {12a)
a:;rim (6 - KN ¢ Bg%aé;;;t « g," (12b)
a:j:+t + {8y - k)0 - kazﬂa%éﬁn+l = §y" (12¢)

CLASE Eggl+ ﬁ“aﬂ =0 {12d)

wharve il = 1%, 8 = 0a; 03 = ikglas 03" = 1kGy"s 02" = @5 and 03" = 1kyG;".  The above system of
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cquations can be solved with one pass through the data base, but two oxtra {ntegratfons fn the Fourfer space
are required co obtayn uy and uy 1n physfcal space, It should be noted, hewever, that such inteqrations cost
far Tess than an l{g 2ass. In addition, to avoid the loss of Information, tpon differentiation, the Fourfer
node assocated with a nul) wave nunber {s simply not multiplied by its wave number (i.e,, zeroi and,
similarly, 1t is not dividad by 1ts wave number upon fntegration. This implies that &y, {z, and &y 1n

€qs. 12 should bu understood as

ﬁiwni’lkah iklﬁl(kllhk;)nkl ¥ o
ﬁz(*;-?ek;)
vafkyayi0)3 $Kylalkysyikg)aky 7 0

The system of £qs, (12) is solved by two separate passes through the data base. In PASS 1, the right-
hand sides of these equations, @ (1 = 1,2,3), are evaluated and {n PASS 2, the block tridiagonal system is
solved, To compute the right-hand side vector in PASS ), differentiations 1n ajl spatia] directisns are
required, Since the pseudospectral method {s used in the horizontal directions {x and z) and a finite~
difference scheme fs used 1n the normal direction (central difference), all the data in an (x - z) plane are
needed for operators fn these directions and the data for at least three ad}acent planes are needed for finite
difference operators. in the y -irection, Therefore, 1n PASS 1, two {x - z) planes are brought into the core
;R ge handled by a touble buffer schema, One complete pass through the data base 1s required to compiete

In PAS5 2, the block tridiagonal system must be solved for cach ky and k3, In this pass, two (y - ki)
planes are brought fnto the core. A special algorithm had to bde develo?ed to solve the bleck tridiagonal
matrix bocayse of the limitation on the core size. In a conventional-block tridiagonal soiver, all the
results of forward sweep are stored to be used in backward sweep, For the present simulation, this would .
require half of the tota] core size (f.e., 16 x 64 x 64} wnich is not feasible, Mence, 2 special algorithm
was developed so that only a part of the results of the forward sweep is stored in the memory and the rest {s
recomputed as necessary in the backward sweep, Although this requires extra computations fn the backward
;weep. this method is much more efffcient than performing the extra 1/0 passes that would otherwfse have

éen necessary,

The computation described here was carried out on the ILLIAC IV computer at Ames Research Center. The
dimensionless time step, during most of the caleulations, was set at at = 0,001, The computer time per
time-step {CPU and 1/0 time) was about 22 sec, Tids computationa) speed has been achieved with a Full use
of the parallel progessing capabilities of the ILLIAC 1Y and the datz mapagement process just deseribed,

7. DETAILED FLOW STRUCTURES

In this section, we investigate the detailed flow patterns by examining contour plots of typfcal
instantaneous velocity and vorticity flelds in x-z, x~y, and y-z planes. In all these plots positive
values are contoured by solid Mnes and negative vaives are contoured by dashed lines. In additien, 211
the plots are ohtafned at a given dimensioniess time (t = 1.4).

Figure 1 shows patterns of " 4n an x-z plane very close to the lower wall (y+ = 16,1). The striking
feature of this figure {s the existence of highly elongated {in the x-tirection) “egions of high-speed
fluid located adjacent to low-speed ones. This picture of the flow pattern fn the vicinity of the wall s
in agreement with experimental observatfons (Refs. 20, 21) that the wix)1 layer consists of relatively cohorent
structures of lew-speed and high-spoed streaks alternating in the spanwise direction. Examinatfon of the
typical spanwise spacing of these structures shows signfficant improvement over the earlier simulation
(Ref, 9) where only 16 uniform grid points were used n cach of the spanwise and streamyise directions. How-
ever, the typical spacing of these streaks is sti11 about 3 times targer than the experimentally observed
mean value of xst w100, This {s expected, since our computational grid size in the spanwise direction is
too 1arge to resolve the wall layer streaks in their proper scale (Sec. 4).

Figure 2 shows patterns of ©" 1in an x-z plane far away from the wall {y/é = 0,73}, 1t is ¢lear
that the u patterns in the regions away from the wall do not show the coherent streaky structures that are
characteristic of wall-layer turbulence. This is also 1n agreement with the experimeptal ebservations
(Ref, 20), In fact, it s difficult to associate a definite structural pattern to © 1in the regions away

from the wall,

Since turbulent encrgy production is directly proportional to -euvsf, 1t {s fmportant to study the
instantaneous map of @"¥, Fiqure 3 shows the patterns of "V 1in the same x-z plane as in Fig., 1;
that 1s, very ciose ko the wall (y* = 16,1). Exam{natfon of this figure reveals several points related to
the dynamics_of wall-layer turbulence that deserve attentfon. First, {t can be seen that the regfons with
negative 0", which have a positive contribution to the production of average turbulent kinetic energy,
constitute the overwhelming majority of the entire plane, Second, pronounced stresmwise elengation, the
characteristic of the wall layer ©" eddies, fs absent in G"V patterns. This indicates that in contrast
to " eddfes, ¥ eddfes are not significant]y elongated in the x-direction. Third, there are several
small regions (hot spots), that are associated with very large values (large concentrations of dashed lines?
of -f"¥, These repjons are highly localized in spacs, Overlaying Fig. 3 on Fig. 1 reveals that the gresi
majority of the "hot spots" are associated with ©" » 0 {(hence, v < 0)1_ Thus, 1t appears that In the ¢icse
vicinfty of the will most of the reglons with very large values of (-i"V) are associated with hiph-speed
fluld approaching the wall {sweeps) rather than law-speed fluid being ejected from the wall {bursts}, With
combined visual and hot-wire measurements, Falco (Ref. 22) has fdentified a new flow module in the vicinity
of the wall. These relatively small but energetic structures (cailed pockets) appear to be footprints of
high-speed fluid moving toward the wall. It is possible that the hot spots ident{fjed here may be related

*The orfginal concept was suggested to us by Marshal} Merriam, Amas Research Center,
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to pockots, Flgure 4 shows the contouy plots of 0" {n the x-z plane tocated at y* e 90, Examfnation
of this figure and the corresponding u" plot (not shown here) shows that in contrast te the near-wall
region most of the hot spots that can be fdentified In thig plane are associated with U <0 and ¥ » 0,
that {s, with bursts, With quadrent analysis of uv, Brodkey et al, {Hef. 23) have found that most of the
contribution to -<uyst {n the wal) region comes from sweops, and that In the veajons away from the wall {t
comes from ejections, This {s consistent with what 1s observed here {n relatfon to Figs. 3 and 4. There
are two other feateres fn Fig, 4 that deserve attention. First, similar to Fig. 1, the renlons with neqative
U'v constitute the overwhelming majority of the ontire plane, Altiough there are regions with very large
peritive u"v, they are hi?hiy localized fn space., Second, the maximum valoe of (-0"%¥) in this_planc is
17,81, This {s about 20 times the expected <-uy>t at this plane. Such large excursions of u"¥ from fts
expected mean value have been a fraquent observation In the laboratory (e.g., sece Ref, 24),

Figure 5 shows cantour plots of §"V {n an x.z plane far away from the tower wall {y/s = 0,72}, Iu
cantrast to planes locatud close to the lowor wall (Figs, 3, A), where the reglons with negative_ 'V domi-
nated the entire planes, a slgnificant portion of this plane_is associated with large Ensitive Uy as well
as negative 'V,  fhe regions with the argest positive @'V are associated with high-speed fluid moving
toward the uppor wall, and the regfons with the largest -u"V  seem to be evenly distributed ameng highes,ced
fluld moving toward the lower wall or low-spped flufd moving away from the tower wall, Finally, examination
of the 4'v patterns in the midplane (not shown hore) veveals that in contrast to the plane jJust described
(y/8 a 0,73), the regions with the IarEest u'v  are_associated with bursts nrlginnttn? in the up?or half of
tgutghan:el. ?hereas the vegtons with the largest -G"V correspond to bursts originating in the Jower half
of the channel,

Among the conceptual models of the faner veglion of turbulent boundary layers 1s the streamwise vorticity
model.  This model portrays the tnner regfop as being composed of pafrs of long counter-rotating streamvise
vortices located adfacent to each other. These long vortical structures, In turn, create low-speed and high-
speed streaks alternating fn the spanwise direction. Figure 6 shows the streamwise vorticity patterns in
the same x-2 plane as in Fig, 1 ?y* = 16), These patterns do not show elongated regions of positive and
negative 3y alternating in the spanwise dirsction. Moreover, no def 1ite relationship appears to exist
between the streak patterns shown in Fig, 1 and T, patterns shown in Flg. 6. Therefore, the present simu-
tation tends to dispute the valldity of the vorticity model.

Figures 7 and B show patterns of " and Z; 1In an x-y plang, z = 15hy, For clarity, ve have expanded
the region 0 < y/& < 0.5, A pronounced feature of Fig, 7 s tha two vepions of high-speed fluid (with res-
pact to the local mean velogity) that are Tnciined at oblique angles with respect to the wall. These struc-
tures are apparently associated with intense shear layers that are also inclined with respsct to the wall
{Fig, 82. Simllar Targe-scale structures have also been observed {n the Jaboratory. Fyom measurements of
space-time correlation of wall shear stress and velectty fluctustions in a turbulent duct flow, Rajagopaion
and Antonfa {Ref. Bz have tdentified large-scale structures that are inclined at a mean angle of about 13°
to the wall, At this time, we have not scanned & sufficient number of x-y planes at widely spaced times
to obtain the mean inclination angle of these structures,

In Figs. 9 tiwough 14, contour plots of the velecities and the streamwise vorticity ina y-z plane
{x = 0) are shown. The contour plots in this plane reveal the cxistence of surprisingly wgll-organized
structures in the wal) region, Figure 9 shows 2 contour plot of t%¢ streamwise velocity u", Hote that the
figure is stretched 4 vimes In the vertical direction and that the contour line patterns are thus distorted
in that direction, Two Impartant features can be chserved {n this figure, First, away from the wall - for
example, y/é > 0,4 - no definite structure is discernible, Near the wall, however, an alternating array of
Yow«spaed and high-speed fluld s noticeable, This array has a long streaky structure in the streawwise
direction, as was shown in Fig. 1. Second, as we approach the wall, the size of the eddies decrease,
aradually, Figure 10 {s a mognified version of Fig. 9 close te the wall, O < y* < 46, Again, the figure {s
highly strotched in the y direction se that the shapes of the flow structures are distorted, The array of
Towsspeed and high-speed fiuid 1s clearly discernible in this figure. This strikingly well-organized flow
structure in the wall region is consistent with the previous experimental cbservations (Ref. 20}, although
the typical spacing batween the strezks {s not correct bocause of the insufficiont spanwise grid spacings
mentioned eardier. In addition to the well-oivanized structere in the wall region, there exists a very
intense shear layer in the vertical plane where the Jow-speed and high-specd fluids come close together.
This could cause free-shear-layer-type {nstabilivies in this plane; such instabilities might be related to
the experimental observations that the 11fted strecks oscillate not only in the vertical dirvectfon but also
in the horizontal planes,

Figurg }1 shows a contour plot of the normal velve'ty ¥ in the same plane as fn Fig., 10, Here, a
positive ¥ (the solid lines) represents fluid moving «wiy from the wall, and a negative ¥ (the dasied
lines) represents fluid moving toward the wall. In this Jlgure we potice an array of fluid moving away and
toward the wall, If we align Fig. 10 with Fig, 11, we no*v-e that, generally, there exists a negative corve-
lation between G" and ¥, Hote that {n the vicinity of the ,all, the Tow-speed Fluid elements (0" < 0) are
generally befng ejected awdy from the wall {v > 0}, while hiyv-speed fluid elements are moving toward the
wall, Clearly, the fluid mptions just described have a posjti~e contribution to the production of averaged
turbulent kinetic energy.

Figure 12 shows a cohwour plot of the_spanwia2 velocity w. A positive W (solid lines) represents
fludd moving to the right and a negative W (dashed line) represents fluid moving to the left, Note also
that a significantly large spanwise velocity gradient in y — that s, th/3y — exists due to the no-slip
boundary conditiens at the wall, This results in substantial streamwise vorticity near the wall, althowgh
flow 15 not actually revolving in this ragion. We will coma hack to this Jater. if we now ali?n the con-
tour plot of W with that of ¥, we ecun Tdentify a definite flow pattern that oxists in the wall region.

A schematic #1lustration of this Flow pattern is given {n Fig. 15. This simplified i1lustration shows how
low-spead streaks are being formed and )ifted away from the wall. [t {s {nteresting to note that the rota-
%ion of thcistreangise vorticity is in the oppostte diveetion to the conventional verticity model (Ref, 25)
see also Fig, 15p).



14-3

Figure 13 shows a contour plot of & fn the y-z plane at x = 0. It can be seen that Wy 15
concentrated only in the wall reglon, Away from the wall, the strength of the vorticity becomoes very week
and no orginized structure §5 Mscernible. Kear the wall, nighly loca)ized concnntratigns of oy appear,
sometines in pafes of ogposite sign. Figure 14 15 & ¢lose~up of the wall region for 3% < 46. Again, the
figure is highly stretched tn_the vertical direction so that the patternt arg distorted. By comparing these
contgur pless with those of ¥ and W, we can distinguish the streamwise vart{city ansecfated wit the_revaly~
ing flufd wotion from the one associated with the velpcity gradients, Rucall thac the existence of wy doas
not guaranteg large-scale revolving flufd motfon. [n fact, most Wy very close tu the wall, sug yte 10,
s due to /by and is not related to the revolving mstion, Some of .y away from the wall, however. {e.9,,
the ong {n the center {n Fig, 14) {5 assoclated with a Jarge-seale reve,ving motivn. This 13 in sgreement
with the experimental observations by flaw visualization techaiques (Kef, 7? wharg streng vevolving motions
ara observed away from the wall (y¥ > 10} and not very c¢lose ta tt. [t shauld also be noted that although
the strang vortical revolvfn% fluld motion appears putside the sublayer, in the present simulation, the root-
mean-square value of Gy, <iy®»M/2 always attafns its maximum at the wall [ncte that :*lwall v (awfay){wall].
8, MEAN VELOCITY PROFILE AND TURGULENCE STATISTICS

Figure 16 shows the mean-velocity proffle <ii> thot has developed after two diensianless time units.
{One nondimensfonal timo unit corresponds approximately to the time tn which a particie moving with center~
Vine yelocity travels 225,) Noto that in the present study horizontal-average values are approximately
ergodie, The calculated velocity profile shows a distinct logarithmic region ever an appreciable portion of
the channel width, For comparisdn, we have also included some of the avallable experimental data in this
figure. The agreement of the computed mean-velgeity profile with experimantal data in mest of the channel
is satisfactory, In the vieinity of the wall, however, the valuas of the computed mean=velocity profile are
rather Tow, This 1s duc to the presence of an excessively large cddy viscosity coefficient near the wall,
To verify this observation, we carrfed out a spt of caleutations {starting from t = 1.0) whers instesd of
the eddy viscosity model, we used a subprid scale model similar to the one used by Fornberg (Ruf. 26;
in our aumerical experiment, smallescale turbulence {5 removed by & sharp cu* €7 *lter at each timg step),
Although this model is rather inadequate for proper representation of the fatersctis~ hatween the subgrid-
scale and resolvable scale motions, it suffices for our present purpose, especially 1f the total time of
Integration is nol Jarge, Ffgure 17 rhows the resulting «g> profile at t e 1.5, |t {s clear that the
profile of <> has atfained the proper values in the vicinity of the wall, In addition, the Togar{ thmic
layer 15 enco a?ain evident, Figure 18 shows the profiles of resolvable normal turbulent intensities,
<U"Fd/3, <§ial2, and a1/2 at the same time as i Fig. 16. It can be seen that in agreement with
oxperimental reasurgnments, generally, <G"2>172 > og2al/2 3 o953 1/2 theaughout the channal, In addition,
«i"2>172 and wies1/2 attadn their maximum values near the wail. Figure 13 shows the profile of the resolve
able turbulent shear stress, <o¥>, [t can be seen that in the reglons away from the wails the proffle of
<uy> does not follow the theorotica) Vine, This indicates that the statistically scat{omary state has not
been resched completely, Note that near the wall viscous stresses are important, and the tota) shear stress
must balance tha ?rqss pressure gyadient, Mm‘eoverjl in the present caleulations, the sobgridescale shear
stresses are significant only very near the wall (y* < 10). in Fla. 20, profiles of tha {ntensities are com-
pared with some of the available experimental data in the vicinity of the wall, ‘he agreement of the computed
<i"2>112 and «y?>1/2 with the data is satisfactory, However, as was alse the case in Ref, 9, near the wall,
a sionificant portion of <V¥»1/2 seems to reside in subgrid-scale motions., This 45 consistent with our
previeus observation that 2 is still excessively large near the walls,

_Figure 21 shows_the resolvable portions of the pressuve velocity-gradient corvalations, ‘ﬁ(aﬁ/sxiv
<p(a¥/ay)>, and <p(akifaz)> 1in the vicinity of the wall {y* < 100, t = 2.0). These terms a.-¢ vespons ble for
the exchange of encrgy between the three componpnts of resoivable turbulence kinetic energy: they are of
particutar Interest to turbulence modeiers, Examination of these nrofiles reveals that except in the fmme-
diate neighborhood of the wall (y® < 20), as expected, energy is )-ansferred from <i"?s Lo <ve» and <wis;
that 1s, <p(ad/ax)> < 0, and <p{dv/ay)>, ~p{aw/dz)> > 0. On the piher hand, as we approach the wall, a slg-
nificantly different hahavior can be noticed. Spectfically, there i5 o relatively larpe rate of energy
transfer from <v2>, whereas there is a large enorgy transfer to <>, This rather upexpacted result ¢
consistent nonetheless with our previous diseussions of the fluid motions very close to the wall (Sec, 7).
For example, Fig. 15a shows high-speed fluid approaching the wall and spreading laterally, resuitfng in
relatively large energy transfer from <v2s to <w2>, On the other hand, the momentum transfer from the
lateral to the nown) directions, which results in ojection of fluid elements away from the wall, Involves
the nonenergetic_sslow moving] fluid {n the iomediate neighborhood of the wall. Thus, there 45 a net eneroy
transfer from «<v=s to «w¥», 45 shawn in Fig. 21.

It should be mentiened that, in gensral, the valugs of the pressure velocity-gradient correlatfons
computed in the present study are significantly higher than the earlier resu)ts using a much coarser grid
{Ref. 3). This may indicate that a substantial portfon of the pressure-strain correiation is due to small-
to-mad{um turbulence scales., To confirm this observation, several computations viere tarried out with dfffer-
ent filter widths, The vesults of the calculations tend te support this obsapvation. Thus, at present,
and in the absence of a better subgrid-scale turbulence theory, the computed pressure-strain correlations
should be fnterpreted qualitatively. It should be mentioned, however, that the large-scale flow structures
presented 1n the previous sectipn arp rather insensitive {qualitatively) to the different filter widths and
subgrid-scale models used.

Befare concluding this section, we tupn qur attention again to the subgridescale madel used in the
present study, o better resclve the relatively small turbulence scales 1n the vicinity of the walls, the
present calculatfons were carried out for the case of a relatively low Reynolds rumber turbulent channel
flow (Re, = 64D, Re « 13,800}, Therafore, the subgrid-scale turbulence Reynolds nusber defined 1n Sec. 3 is
considerad to be Tow in the regions away from the wall and very Yow in the vicinity of the walls, As was
mentioned {0 Sec, 3, the arguments used i constructing this model sre valid only at a very high Reynolds
number. Numerical vosults af McMi{llan and Farziger (Ref. 30} also show that Smagorinsky®s madel {s more
appropriate at high Reynalds numbers. Thus, 2 Tow Reynolds number correction seems to be necessary. Note
tﬂat ecause of the use of a mych fiper grid in this simulation than that used in Ref, 9, the effective
subgrid-scale turbulence Reynolds number is Jower than that in Ref. 9. In addition, because of the quasi-
cyclic nature of turbinént channei flow (bursts, sweeps, etc.) the present caleulations seem to indicate
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that a subgrid-scale mode] that has a better rosponse to the time history of the flor (a dynamic model) than
the simple eddy viscosity model waed here may be necessary, This Te necessary for a proper longetimoe inte-
?ratlon of the governin? equations. lntegratin? an additional e?uation for subgrid-scale turbulence cnergy

5 an attractive possibility, In the Interim, however, we have found that selective filtering of the excess
sratlescale turbulence may he adequate.

3. CONCLUSIONS

In this study, the three-dimensfonal time-depondent equations of motion have becn numarically {ntegrated
for the case of fully-developed turbulent channel flow. The calculations were carried gut on the ILLJAC 1V
computer with 64 mesh points in each of the spatial directions, Detailed flow patterns were studfed hy
examining contour plots of typfeal fnstantancous velocity and vorticity fieids. Tn surmary:

], The wall layer consisted of ¢ohorent structures of Jow-speed and high-speed stroaks alternating in
the spanwise direction, These structures are absent fn the regions away from the wall, Ia addition, cantour
p;?;srgglv€loclties in a typfcal y-z plane revealed the existence of well-organized flow patterns in the
W an,

2. Hot spots, smail localized reglons of vary large values of turbulenl shear stress, 07V, were fre-
quently observed, VYery close to the wall, thest hot sp2+¢ wore associated with @ >0 and 9 < 0 (sweop)s
away frem the wall, they were due to 8" < 0 ana 9 » 0 {burst). In the central reyfons of the channel,
bursts from both halves of the channe) were the sources of the hot spots,

3. Ho ovidence of a direct relationship betwien streaks and streamwise vorticity Oy was observed
in the present simulation; very close to the wall, I, was not the result of Jarge-scale revelving fluid
mations but was rather due to the spanwise velacity oradfent, {aW/3y). Though strong vortica) regions were
observed awdy from the wall (y* ~ 30}, <G>/ attatned 1ts maximum value at the wall,

4, The profiles of the pressure velocity-gradient corralation showed 3 significant transfer of encrgy
from the normil to the spanwise component of turbulent kinetr¢ energy In the immediate nefghberhoed of the
wall (toe “splattin?" effect)., A large portisn of the pressurc-strain correlations appears to be due to
small to medfum scales of turbulent mations,

e work presented here 1s sti11 {n progress and much more remains to be dona. In particular, & more
refined model that du?icts the dynamic mature of the subgrid-scale motion mady become pecessary. Also, more
mesh points, especially in the spanwise direction, are required in order to resolve the streaks ay their
proper scale. A computation with twice as many grid points as in the present calculation {64 » 64 x 128)
will be carried cut in the near futurg,

It {5 hoped that this paper has demonstrated some of the capabilitfes of LES as a rescarch tool for
studyfng the mechanics and structure of turbulent boundary layers. The authors believe that LES will make
tmpartant contributions to the study of turbulent fiows by supplementing the experimenta) data.
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Fig. 1. Contours of 4" in the x-z plane at y* = 16,

Fig. 2. Contours of @

in the x-z plane at ys4 = 0.73.

14-11



1412

. () R T s ) . !
P ke st .

FE T L™ ok i i TR 4 o e N ARt s A 8 © o - s——
<y

z
x
Fig. 3. Contour plot of G”G in the x-z plane at ,.0 . 16.
—— AT I - ——rp———— .
LS -~ « ~ , 2t — -
ez = | ,/: - | Ny ) - - \.. g
z

Fig. 4. Contour plot of 0"V in the x-z plane at y* = 90,

e - HGE I8
W POGR QUAMITE



14-12

Fig. 6. Contours of the streamwise vorticity Iy in the x-z plane at y* = 16. Note that the 1,
patterns do not exhibit elongated structures in the x-direction.
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Fig. 13.
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OYE INJECTED AT THE WALL WILL BE COLLECTED HERE AND Fig. 17. Mean-velocity profile obtained with the
LIFTED UPWARD sharp cutoff model (Ref. 26).

(a) Cross-sectional view of spanwise velocity in
y=2 plane.
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(b) Streamwise vorticity according to (a).

Fig. 15. Schematic diagram of the flow patterns in
the immediace neighborhood of the wall,

Fig. 18. Profiles of horizontally averaged resolv-
able turbulence intentities,
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Fig. 16. Mean-velocity profile.

Fig. 19. Vertical profile of horizontally averaged
resolvable turbulent shear stress.
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Fig. 20. Comparison of the horizontally averaged resolvable turbulence intensities with experimental data.
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Fig. 21. Vertical profiles of horizontally averaged resolvable pressure velocity gradient correlations in
the vicinity of the wall (y* < 100).
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