970 research outputs found

    Phase space polarization and the topological string: a case study

    Get PDF
    We review and elaborate on our discussion in hep-th/0606112 on the interplay between the target space and the worldsheet description of the open topological string partition function, for the example of the conifold. We discuss the appropriate phase space and canonical form for the system. We find a map between choices of polarization and the worldsheet description, based on which we study the behavior of the partition function under canonical transformations.Comment: 18 pages, invited review for MPL

    Identification of dynein as the outer arms of sea urchin sperm axonemes.

    Full text link

    Parallel Metric Tree Embedding based on an Algebraic View on Moore-Bellman-Ford

    Full text link
    A \emph{metric tree embedding} of expected \emph{stretch~α1\alpha \geq 1} maps a weighted nn-node graph G=(V,E,ω)G = (V, E, \omega) to a weighted tree T=(VT,ET,ωT)T = (V_T, E_T, \omega_T) with VVTV \subseteq V_T such that, for all v,wVv,w \in V, dist(v,w,G)dist(v,w,T)\operatorname{dist}(v, w, G) \leq \operatorname{dist}(v, w, T) and operatornameE[dist(v,w,T)]αdist(v,w,G)operatorname{E}[\operatorname{dist}(v, w, T)] \leq \alpha \operatorname{dist}(v, w, G). Such embeddings are highly useful for designing fast approximation algorithms, as many hard problems are easy to solve on tree instances. However, to date the best parallel (polylogn)(\operatorname{polylog} n)-depth algorithm that achieves an asymptotically optimal expected stretch of αO(logn)\alpha \in \operatorname{O}(\log n) requires Ω(n2)\operatorname{\Omega}(n^2) work and a metric as input. In this paper, we show how to achieve the same guarantees using polylogn\operatorname{polylog} n depth and O~(m1+ϵ)\operatorname{\tilde{O}}(m^{1+\epsilon}) work, where m=Em = |E| and ϵ>0\epsilon > 0 is an arbitrarily small constant. Moreover, one may further reduce the work to O~(m+n1+ϵ)\operatorname{\tilde{O}}(m + n^{1+\epsilon}) at the expense of increasing the expected stretch to O(ϵ1logn)\operatorname{O}(\epsilon^{-1} \log n). Our main tool in deriving these parallel algorithms is an algebraic characterization of a generalization of the classic Moore-Bellman-Ford algorithm. We consider this framework, which subsumes a variety of previous "Moore-Bellman-Ford-like" algorithms, to be of independent interest and discuss it in depth. In our tree embedding algorithm, we leverage it for providing efficient query access to an approximate metric that allows sampling the tree using polylogn\operatorname{polylog} n depth and O~(m)\operatorname{\tilde{O}}(m) work. We illustrate the generality and versatility of our techniques by various examples and a number of additional results

    Feature weighting techniques for CBR in software effort estimation studies: A review and empirical evaluation

    Get PDF
    Context : Software effort estimation is one of the most important activities in the software development process. Unfortunately, estimates are often substantially wrong. Numerous estimation methods have been proposed including Case-based Reasoning (CBR). In order to improve CBR estimation accuracy, many researchers have proposed feature weighting techniques (FWT). Objective: Our purpose is to systematically review the empirical evidence to determine whether FWT leads to improved predictions. In addition we evaluate these techniques from the perspectives of (i) approach (ii) strengths and weaknesses (iii) performance and (iv) experimental evaluation approach including the data sets used. Method: We conducted a systematic literature review of published, refereed primary studies on FWT (2000-2014). Results: We identified 19 relevant primary studies. These reported a range of different techniques. 17 out of 19 make benchmark comparisons with standard CBR and 16 out of 17 studies report improved accuracy. Using a one-sample sign test this positive impact is significant (p = 0:0003). Conclusion: The actionable conclusion from this study is that our review of all relevant empirical evidence supports the use of FWTs and we recommend that researchers and practitioners give serious consideration to their adoption

    Learning with Biased Complementary Labels

    Full text link
    In this paper, we study the classification problem in which we have access to easily obtainable surrogate for true labels, namely complementary labels, which specify classes that observations do \textbf{not} belong to. Let YY and Yˉ\bar{Y} be the true and complementary labels, respectively. We first model the annotation of complementary labels via transition probabilities P(Yˉ=iY=j),ij{1,,c}P(\bar{Y}=i|Y=j), i\neq j\in\{1,\cdots,c\}, where cc is the number of classes. Previous methods implicitly assume that P(Yˉ=iY=j),ijP(\bar{Y}=i|Y=j), \forall i\neq j, are identical, which is not true in practice because humans are biased toward their own experience. For example, as shown in Figure 1, if an annotator is more familiar with monkeys than prairie dogs when providing complementary labels for meerkats, she is more likely to employ "monkey" as a complementary label. We therefore reason that the transition probabilities will be different. In this paper, we propose a framework that contributes three main innovations to learning with \textbf{biased} complementary labels: (1) It estimates transition probabilities with no bias. (2) It provides a general method to modify traditional loss functions and extends standard deep neural network classifiers to learn with biased complementary labels. (3) It theoretically ensures that the classifier learned with complementary labels converges to the optimal one learned with true labels. Comprehensive experiments on several benchmark datasets validate the superiority of our method to current state-of-the-art methods.Comment: ECCV 2018 Ora

    Hybrid expansions for local structural relaxations

    Full text link
    A model is constructed in which pair potentials are combined with the cluster expansion method in order to better describe the energetics of structurally relaxed substitutional alloys. The effect of structural relaxations away from the ideal crystal positions, and the effect of ordering is described by interatomic-distance dependent pair potentials, while more subtle configurational aspects associated with correlations of three- and more sites are described purely within the cluster expansion formalism. Implementation of such a hybrid expansion in the context of the cluster variation method or Monte Carlo method gives improved ability to model phase stability in alloys from first-principles.Comment: 8 pages, 1 figur

    Seiberg-Witten prepotential for E-string theory and global symmetries

    Get PDF
    We obtain Nekrasov-type expressions for the Seiberg-Witten prepotential for the six-dimensional (1,0) supersymmetric E-string theory compactified on T^2 with nontrivial Wilson lines. We consider compactification with four general Wilson line parameters, which partially break the E_8 global symmetry. In particular, we investigate in detail the cases where the Lie algebra of the unbroken global symmetry is E_n + A_{8-n} with n=8,7,6,5 or D_8. All our Nekrasov-type expressions can be viewed as special cases of the elliptic analogue of the Nekrasov partition function for the SU(N) gauge theory with N_f=2N flavors. We also present a new expression for the Seiberg-Witten curve for the E-string theory with four Wilson line parameters, clarifying the connection between the E-string theory and the SU(2) Seiberg-Witten theory with N_f=4 flavors.Comment: 22 pages. v2: comments and a reference added, version to appear in JHE
    corecore