579 research outputs found

    Serum CXCL5 Detects Early Hepatocellular Carcinoma and Indicates Tumor Progression

    Get PDF
    Chemokines or chemotactic cytokines play a pivotal role in the immune pathogenesis of liver cirrhosis and hepatocellular carcinoma (HCC). Nevertheless, comprehensive cytokine profiling data across different etiologies of liver diseases are lacking. Chemokines might serve as diagnostic and prognostic biomarkers. In our study, we analyzed serum concentrations of 12 inflammation-related chemokines in a cohort of patients (n = 222) with cirrhosis of different etiologies and/or HCC. We compared 97 patients with cirrhosis and treatment-naive HCC to the chemokine profile of 125 patients with cirrhosis but confirmed absence of HCC. Nine out of twelve chemokines were significantly elevated in sera of cirrhotic patients with HCC compared to HCC-free cirrhosis controls (CCL2, CCL11, CCL17, CCL20, CXCL1, CXCL5, CXCL9, CXCL10, CXCL11). Among those, CXCL5, CXCL9, CXCL10, and CXCL11 were significantly elevated in patients with early HCC according to the Barcelona Clinic Liver Cancer (BCLC) stages 0/A compared to cirrhotic controls without HCC. In patients with HCC, CXCL5 serum levels were associated with tumor progression, and levels of CCL20 and CXCL8 with macrovascular invasion. Importantly, our study identified CXCL5, CXCL9, and CXCL10 as universal HCC markers, independent from underlying etiology of cirrhosis. In conclusion, regardless of the underlying liver disease, patients with cirrhosis share an HCC-specific chemokine profile. CXCL5 may serve as a diagnostic biomarker in cirrhotic patients for early HCC detection as well as for tumor progression

    In Vivo Models for Cholangiocarcinoma—What Can We Learn for Human Disease?

    Get PDF
    Cholangiocarcinoma (CCA) comprises a heterogeneous group of primary liver tumors. They emerge from different hepatic (progenitor) cell populations, typically via sporadic mutations. Chronic biliary inflammation, as seen in primary sclerosing cholangitis (PSC), may trigger CCA development. Although several efforts were made in the last decade to better understand the complex processes of biliary carcinogenesis, it was only recently that new therapeutic advances have been achieved. Animal models are a crucial bridge between in vitro findings on molecular or genetic alterations, pathophysiological understanding, and new therapeutic strategies for the clinic. Nevertheless, it is inherently difficult to recapitulate simultaneously the stromal microenvironment (e.g., immune-competent cells, cholestasis, inflammation, PSC-like changes, fibrosis) and the tumor biology (e.g., mutational burden, local growth, and metastatic spread) in an animal model, so that it would reflect the full clinical reality of CCA. In this review, we highlight available data on animal models for CCA. We discuss if and how these models reflect human disease and whether they can serve as a tool for understanding the pathogenesis, or for predicting a treatment response in patients. In addition, open issues for future developments will be discussed

    Shear wave elastography-based liver fibrosis assessment in patients with chronic hepatitis E displays elevated liver stiffness regardless of previous antiviral therapy

    Get PDF
    Background: Hepatitis E virus (HEV) infection especially in immunocompromised individuals can lead to chronic hepatitis. Aggressive courses of chronic hepatitis E leading to liver cirrhosis in a short period of time have been described, but evidence on the degree of liver involvement in chronic hepatitis E is rare. Vie therefore aimed to quantify liver fibrosis in patients with chronic active hepatitis E compared to patients with sustained virological response after ribavirin (RBV) treatment using 2D-shear wave elastography (2D-SWE) to measure liver stiffness. Methods: Patients with chronic hepatitis E underwent 2D-SWE, B-mode and Doppler ultrasound and laboratory testing in order to assess severity of liver involvement. Results: In this cross-sectional study, we included 14 patients of whom 8 had ongoing chronic hepatitis E and 6 patients had been successfully treated for chronic hepatitis E. The most frequent cause for immunosuppression was prior kidney transplantation (n = 12), one patient was a multivisceral transplant recipient, one had been treated for lymphoma. Five patients cleared HEV after RBV therapy, one patient reached viral clearance after reduction of his immunosuppressive medication. Using 2D-SWE measurement, 71.4% displayed increased stiffness indicative of liver fibrosis: 57.1% classified as significant fibrosis and 14.3% as severe fibrosis. Liver stiffness did not differ between patients with active chronic hepatitis E and in patients who had cleared HEN (1.59 and 1.54 m/S respectively). Compared with a control group of kidney transplant recipients without hepatitis E (1.44 m/S), the patients with a history of hepatitis E displayed a significantly higher liver stiffness (P=0.04). Conclusions: In our cohort of chronic hepatitis E patients, elevated liver stiffness indicating liver fibrosis was common and significantly higher than in controls. This is consistent with prior sparse reports of the presence of liver fibrosis or cirrhosis in chronic hepatitis E and emphasizes the need for HEV testing, therapy and research on new therapeutic options. As elevated liver stiffness was also present in patients after HEV treatment, continuous liver surveillance including elastography and ultrasound should be considered

    Compact, bulge dominated structures of spectroscopically confirmed quiescent galaxies at z~3

    Get PDF
    We study structural properties of spectroscopically confirmed massive quiescent galaxies at z3z\approx 3 with one of the first sizeable samples of such sources, made of ten 10.8<log(M/M)<11.310.8<\log(M_{\star}/M_{\odot})<11.3 galaxies at 2.4<z<3.22.4 < z < 3.2 in the COSMOS field whose redshifts and quiescence are confirmed by HST grism spectroscopy. Although affected by a weak bias toward younger stellar populations, this sample is deemed to be largely representative of the majority of the most massive and thus intrinsically rarest quiescent sources at this cosmic time. We rely on targeted HST/WFC3 observations and fit S\'ersic profiles to the galaxy surface brightness distributions at 4000\approx 4000 angstrom restframe. We find typically high S\'ersic indices and axis ratios (medians 4.5\approx 4.5 and 0.730.73, respectively) suggesting that, at odds with some previous results, the first massive quiescent galaxies may largely be already bulge-dominated systems. We measure compact galaxy sizes with an average of 1.4\approx 1.4kpc at log(M/M)11.2\log(M_{\star}/M_{\odot})\approx 11.2, in good agreement with the extrapolation at the highest masses of previous determinations of the stellar mass - size relation of quiescent galaxies, and of its redshift evolution, from photometrically selected samples at lower and similar redshifts. This work confirms the existence of a population of compact, bulge dominated, massive, quiescent sources at z3z\approx 3, providing one of the first statistical estimates of their structural properties, and further constraining the early formation and evolution of the first quiescent galaxies.Comment: 19 pages, 10 figures. Accepted for publication in MNRA

    CO-dependent hydrogen production by the facultative anaerobe Parageobacillus thermoglucosidasius

    Get PDF
    Background The overreliance on dwindling fossil fuel reserves and the negative climatic effects of using such fuels are driving the development of new clean energy sources. One such alternative source is hydrogen (H2), which can be generated from renewable sources. Parageobacillus thermoglucosidasius is a facultative anaerobic thermophilic bacterium which is frequently isolated from high temperature environments including hot springs and compost. Results Comparative genomics performed in the present study showed that P. thermoglucosidasius encodes two evolutionary distinct H2-uptake [Ni-Fe]-hydrogenases and one H2-evolving hydrogenases. In addition, genes encoding an anaerobic CO dehydrogenase (CODH) are co-localized with genes encoding a putative H2-evolving hydrogenase. The co-localized of CODH and uptake hydrogenase form an enzyme complex that might potentially be involved in catalyzing the water-gas shift reaction (CO + H2O → CO2 + H2) in P. thermoglucosidasius. Cultivation of P. thermoglucosidasius DSM 2542T with an initial gas atmosphere of 50% CO and 50% air showed it to be capable of growth at elevated CO concentrations (50%). Furthermore, GC analyses showed that it was capable of producing hydrogen at an equimolar conversion with a final yield of 1.08 H2/CO. Conclusions This study highlights the potential of the facultative anaerobic P. thermoglucosidasius DSM 2542T for developing new strategies for the biohydrogen production

    Combined analysis of gut microbiota, diet and PNPLA3 polymorphism in biopsy‐proven non‐alcoholic fatty liver disease

    Get PDF
    Background and aims: Non-alcoholic fatty liver disease (NAFLD) is a global health burden. Risk factors for disease severity include older age, increased body mass index (BMI), diabetes, genetic variants, dietary factors and gut microbiota alterations. However, the interdependence of these factors and their individual impact on disease severity remain unknown. Methods: In this cross-sectional study, we performed 16S gene sequencing using fecal samples, collected dietary intake, PNPLA3 gene variants and clinical and liver histology parameters in a well-described cohort of 180 NAFLD patients. Principal component analyses were used for dimensionality reduction of dietary and microbiota data. Simple and multiple stepwise ordinal regression analyses were performed. Results: Complete data were available for 57 NAFLD patients. In the simple regression analysis, features associated with the metabolic syndrome had the highest importance regarding liver disease severity. In the multiple regression analysis, BMI was the most important factor associated with the fibrosis stage (OR per kg/m2 : 1.23, 95% CI 1.10-1.37, P < .001). The PNPLA3 risk allele had the strongest association with the histological grade of steatosis (OR 5.32, 95% CI 1.56-18.11, P = .007), followed by specific dietary patterns. Low abundances of Faecalibacterium, Bacteroides and Prevotella and high abundances of Gemmiger were associated with the degree of inflammation, ballooning and stages of fibrosis, even after taking other cofactors into account. Conclusions: BMI had the strongest association with histological fibrosis, but PNPLA3 gene variants, gut bacterial features and dietary factors were all associated with different histology features, which underscore the multifactorial pathogenesis of NAFLD

    A Full-Genomic Sequence-Verified Protein-Coding Gene Collection for Francisella tularensis

    Get PDF
    The rapid development of new technologies for the high throughput (HT) study of proteins has increased the demand for comprehensive plasmid clone resources that support protein expression. These clones must be full-length, sequence-verified and in a flexible format. The generation of these resources requires automated pipelines supported by software management systems. Although the availability of clone resources is growing, current collections are either not complete or not fully sequence-verified. We report an automated pipeline, supported by several software applications that enabled the construction of the first comprehensive sequence-verified plasmid clone resource for more than 96% of protein coding sequences of the genome of F. tularensis, a highly virulent human pathogen and the causative agent of tularemia. This clone resource was applied to a HT protein purification pipeline successfully producing recombinant proteins for 72% of the genes. These methods and resources represent significant technological steps towards exploiting the genomic information of F. tularensis in discovery applications
    corecore