4 research outputs found

    Sparsification of RNA Structure Prediction Including Pseudoknots

    Get PDF
    Background: Although many RNA molecules contain pseudoknots, computational prediction of pseudoknottedRNA structure is still in its infancy due to high running time and space consumption implied by the dynamicprogramming formulations of the problem.Results: In this paper, we introduce sparsification to significantly speedup the dynamic programming approachesfor pseudoknotted RNA structure prediction, which also lower the space requirements. Although sparsification hasbeen applied to a number of RNA-related structure prediction problems in the past few years, we provide the firstapplication of sparsification to pseudoknotted RNA structure prediction specifically and to handling gappedfragments more generally - which has a much more complex recursive structure than other problems to whichsparsification has been applied. We analyse how to sparsify four pseudoknot structure prediction algorithms,among those the most general method available (the Rivas-Eddy algorithm) and the fastest one (Reeder-Giegerichalgorithm). In all algorithms the number of “candidate” substructures to be considered is reduced.Conclusions: Our experimental results on the sparsified Reeder-Giegerich algorithm suggest a linear speedup overthe unsparsified implementation

    The Acidic Tail of the Cdc34 Ubiquitin-conjugating Enzyme Functions in Both Binding to and Catalysis with Ubiquitin Ligase SCFC^(dc4*)

    Get PDF
    Ubiquitin ligases, together with their cognate ubiquitin-conjugating enzymes, are responsible for the ubiquitylation of proteins, a process that regulates a myriad of eukaryotic cellular functions. The first cullin-RING ligase discovered, yeast SCF^(Cdc4), functions with the conjugating enzyme Cdc34 to regulate the cell cycle. Cdc34 orthologs are notable for their highly acidic C-terminal extension. Here we confirm that the Cdc34 acidic C-terminal tail has a role in Cdc34 binding to SCF^(Cdc4) and makes a major contribution to the submicromolar K_m of Cdc34 for SCF^(Cdc4). Moreover, we demonstrate that a key functional property of the tail is its acidity. Our analysis also uncovers an unexpected new function for the acidic tail in promoting catalysis. We demonstrate that SCF is functional when Cdc34 is fused to the C terminus of Cul1 and that this fusion retains partial function even when the acidic tail has been deleted. The Cdc34-SCF fusion proteins that lack the acidic tail must interact in a fundamentally different manner than unfused SCF and wild type Cdc34, demonstrating that distinct mechanisms of E2 recruitment to E3, as is seen in nature, can sustain substrate ubiquitylation. Finally, a search of the yeast proteome uncovered scores of proteins containing highly acidic stretches of amino acids, hinting that electrostatic interactions may be a common mechanism for facilitating protein assembly
    corecore