411 research outputs found

    Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy

    Full text link
    The thermal expansion coefficient (TEC) of single-layer graphene is estimated with temperature-dependent Raman spectroscopy in the temperature range between 200 and 400 K. It is found to be strongly dependent on temperature but remains negative in the whole temperature range, with a room temperature value of -8.0x10^{-6} K^{-1}. The strain caused by the TEC mismatch between graphene and the substrate plays a crucial role in determining the physical properties of graphene, and hence its effect must be accounted for in the interpretation of experimental data taken at cryogenic or elevated temperatures.Comment: 17 pagese, 3 figures, and supporting information (4 pages, 3 figures); Nano Letters, 201

    Intraoperative ultrasound-guided iodine-125 seed implantation for unresectable pancreatic carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To assess the feasibility and efficacy of using <sup>125</sup>I seed implantation under intraoperative ultrasound guidance for unresectable pancreatic carcinoma.</p> <p>Methods</p> <p>Fourteen patients with pancreatic carcinoma that underwent laparotomy and considered unresectable were included in this study. Nine patients were pathologically diagnosed with Stage II disease, five patients with Stage III disease. Fourteen patients were treated with <sup>125</sup>I seed implantation guided by intraoperative ultrasound and received D<sub>90 </sub>of <sup>125</sup>I seeds ranging from 60 to 140 Gy with a median of 120 Gy. Five patients received an additional 35–50 Gy from external beam radiotherapy after seed implantation and six patients received 2–6 cycles of chemotherapy.</p> <p>Results</p> <p>87.5% (7/8) of patients received partial to complete pain relief. The response rate of tumor was 78.6%, One-, two-and three-year survival rates were 33.9% and 16.9%, 7.8%, with local control of disease achieved in 78.6% (11/14), and the median survival was 10 months (95% CI: 7.7–12.3).</p> <p>Conclusion</p> <p>There were no deaths related to <sup>125</sup>I seed implant. In this preliminary investigation, <sup>125</sup>I seed implant provided excellent palliation of pain relief, local control and prolong the survival of patients with stage II and III disease to some extent.</p

    Water-Gated Charge Doping of Graphene Induced by Mica Substrates

    Full text link
    We report on the existence of water-gated charge doping of graphene deposited on atomically flat mica substrates. Molecular films of water in units of ~0.4 nm-thick bilayers were found to be present in regions of the interface of graphene/mica hetero-stacks prepared by micromechanical exfoliation of kish graphite. The spectral variation of the G and 2D bands, as visualized by Raman mapping, shows that mica substrates induce strong p-type doping in graphene, with hole densities of (9±2)×1012cm(9 \pm 2) \times 1012 cm{-2}$. The ultrathin water films, however, effectively block interfacial charge transfer, rendering graphene significantly less hole-doped. Scanning Kelvin probe microscopy independently confirmed a water-gated modulation of the Fermi level by 0.35 eV, in agreement with the optically determined hole density. The manipulation of the electronic properties of graphene demonstrated in this study should serve as a useful tool in realizing future graphene applications.Comment: 15 pages, 4 figures; Nano Letters, accepted (2012

    Micro-Electro-Mechanical-Systems (MEMS) and Fluid Flows

    Get PDF
    The micromachining technology that emerged in the late 1980s can provide micron-sized sensors and actuators. These micro transducers are able to be integrated with signal conditioning and processing circuitry to form micro-electro-mechanical-systems (MEMS) that can perform real-time distributed control. This capability opens up a new territory for flow control research. On the other hand, surface effects dominate the fluid flowing through these miniature mechanical devices because of the large surface-to-volume ratio in micron-scale configurations. We need to reexamine the surface forces in the momentum equation. Owing to their smallness, gas flows experience large Knudsen numbers, and therefore boundary conditions need to be modified. Besides being an enabling technology, MEMS also provide many challenges for fundamental flow-science research

    Probing Mechanical Properties of Graphene with Raman Spectroscopy

    Get PDF
    The use of Raman scattering techniques to study the mechanical properties of graphene films is reviewed here. The determination of Gruneisen parameters of suspended graphene sheets under uni- and bi-axial strain is discussed and the values are compared to theoretical predictions. The effects of the graphene-substrate interaction on strain and to the temperature evolution of the graphene Raman spectra are discussed. Finally, the relation between mechanical and thermal properties is presented along with the characterization of thermal properties of graphene with Raman spectroscopy.Comment: To appear in the Journal of Materials Scienc

    Compression Behavior of Single-layer Graphene

    Full text link
    Central to most applications involving monolayer graphene is its mechanical response under various stress states. To date most of the work reported is of theoretical nature and refers to tension and compression loading of model graphene. Most of the experimental work is indeed limited to bending of single flakes in air and the stretching of flakes up to typically ~1% using plastic substrates. Recently we have shown that by employing a cantilever beam we can subject single graphene into various degrees of axial compression. Here we extend this work much further by measuring in detail both stress uptake and compression buckling strain in single flakes of different geometries. In all cases the mechanical response is monitored by simultaneous Raman measurements through the shift of either the G or 2D phonons of graphene. In spite of the infinitely small thickness of the monolayers, the results show that graphene embedded in plastic beams exhibit remarkable compression buckling strains. For large length (l)-to-width (w) ratios (> 0.2) the buckling strain is of the order of -0.5% to -0.6%. However, for l/w <0.2 no failure is observed for strains even higher than -1%. Calculations based on classical Euler analysis show that the buckling strain enhancement provided by the polymer lateral support is more than six orders of magnitude compared to suspended graphene in air

    Definition of strategies for the reduction of operational inefficiencies in a stroke unit

    Get PDF
    Stroke disease is the second common cause of death in the world and is then of particular concern to policy-makers. Additionally, it is a meaningful problem leaving a high number of people with severe disabilities, placing a heavy burden on society and incurring prolonged length of stay. In this respect, it is necessary to develop analytic models providing information on care system behavior in order to detect potential operational inefficiencies along the stroke patient journey and subsequently design improvement strategies. However, modeling stroke care is highly complex due to the multiple clinical outcomes and different pathways. Therefore, this paper presents an integrated approach between Discrete-event Simulation (DES) and Markov models so that integrated planning of healthcare services relating to stroke care and the evaluation of potential improvement scenarios can be facilitated, made more logically robust and easy to understand. First, a stroke care system from Colombia was characterized by identifying the exogenous and endogenous variables of the process. Afterward, an input analysis was conducted to define the probability distributions of the aforementioned variables. Then, both DES and Markov models were designed and validated to provide deeper analysis of the entire patient journey. Finally, the possible adoption of thrombolytic treatment on patients with stroke disease was assessed based on the proposed approaches within this paper. The results evidenced that the length of stay (LOS) decreased by 12,89% and the mortality ratio was diminished by 21,52%. Evaluation of treatment cost per patient is also carried out

    Viterbi decoding of CRES signals in Project 8

    Get PDF
    Cyclotron radiation emission spectroscopy (CRES) is a modern approach for determining charged particle energies via high-precision frequency measurements of the emitted cyclotron radiation. For CRES experiments with gas within the fiducial volume, signal and noise dynamics can be modelled by a hidden Markov model. We introduce a novel application of the Viterbi algorithm in order to derive informational limits on the optimal detection of cyclotron radiation signals in this class of gas-filled CRES experiments, thereby providing concrete limits from which future reconstruction algorithms, as well as detector designs, can be constrained. The validity of the resultant decision rules is confirmed using both Monte Carlo and Project 8 data
    corecore