6 research outputs found

    Advances and promises of layered halide hybrid perovskite semiconductors

    Get PDF
    Layered halide hybrid organic-inorganic perovskites (HOP) have been the subject of intense investigation before the rise of three-dimensional (3D) HOP and their impressive performance in solar cells. Recently, layered HOP have also been proposed as attractive alternatives for photostable solar cells and revisited for light-emitting devices. In this review, we combine classical solid-state physics concepts with simulation tools based on density functional theory to overview the main features of the optoelectronic properties of layered HOP. A detailed comparison between layered and 3D HOP is performed to highlight differences and similarities. In the same way as the cubic phase was established for 3D HOP, here we introduce the tetragonal phase with D symmetry as the reference phase for 2D monolayered HOP. It allows for detailed analysis of the spin-orbit coupling effects and structural transitions with corresponding electronic band folding. We further investigate the effects of octahedral tilting on the band gap, loss of inversion symmetry and possible Rashba effect, quantum confinement, and dielectric confinement related to the organic barrier, up to excitonic properties. Altogether, this paper aims to provide an interpretive and predictive framework for 3D and 2D layered HOP optoelectronic properties.The work at FOTON is supported by Agence Nationale pour la Recherche (SNAP and SuperSansPlomb projects) and was performed using HPC resources from GENCI-CINES/IDRIS Grant 2016-c2012096724. The work at ISCR is supported by Agence Nationale pour la Recherche (TRANSHYPERO project). J.E.’s work is supported by the Fondation d’entreprises banque Populaire de l’Ouest under Grant PEROPHOT 2015. The work at Los Alamos National Laboratory (LANL) was supported by LANL LDRD program and was partially performed at the Center for Nonlinear Studies and at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Science user facility. The Groningen team would like to acknowledge funding from European Research Council (ERC Starting Grant “Hy-SPOD” No. 306983) and by the Foundation for Fundamental Research on Matter (FOM), which is part of The Netherlands Organization for Scientific Research (NWO), under the framework of the FOM Focus Group “Next Generation Organic Photovoltaics”. ICN2 acknowledges support from the Severo Ochoa Program (MINECO, Grant SEV-2013-0295). This project received funding from the European Union's Horizon 2020 research and innovation programme under the grant agreement no. 687008.Peer Reviewe

    Functionalization of polypyrrole nanopipes with redox-active polyoxometalates for high energy density supercapacitors

    Get PDF
    Hybrid materials are very attractive for the fabrication of high-performance supercapacitors. Here, we have explored organic–inorganic hybrid materials based on open-end porous 1 D polypyrrole nanopipes (PPy-NPipes) and heteropolyoxometalates (phosphotungstate ([PWO], PW) or phosphomolybdate ([PMoO], PMo)) that display excellent areal capacitances. Two different hybrid materials (PMo@PPy and PW@PPy) were effectively synthesized and used for symmetric supercapacitors. The anchoring of the inorganic nanoclusters onto the conducting polymer nanopipes led to electrodes that stood up to our best expectations exhibiting outstanding areal capacitances that are almost 1.5 to 2 fold higher than that of pristine PPy-NPipes. In addition, symmetric cells based on PMo@PPy and PW@PPy hybrid electrodes were fabricated and showed significant improvement in cell performance with very high volumetric capacitances in the range of 6.3–6.8 F cm (considering the volume of whole device). Indeed, they provide extended potential windows in acidic electrolytes (up to 1.5 V) which led to ultrahigh energy densities of 1.5 and 2.2 mWh cm for PMo@PPy and PW@PPy cells, respectively. Thus, these unique organic-inorganic hybrid symmetric cells displayed extraordinary electrochemical performances far exceeding those of more complex asymmetric systems.Partial funding from Ministerio de Economía y Competitividad through Fondo Europeo de Desarrollo Regional (FEDER) (Grant MAT2015-68394-R, MINECO/FEDER) and from AGAUR (project NESTOR, Grant 2014_SGR_1505) are acknowledged. ICN2 acknowledges support of the Spanish MINECO through the Severo Ochoa Centers of Excellence Program under Grant SEV-2013-0295. Finally, the award to D.P.D. of a Marie-Curie Fellowship through Beatriu de Pinos Program (BP-DGR-2013) from the Catalan system of science and technology, Spain, is gratefully acknowledgedPeer Reviewe

    Functionalization of Polypyrrole Nanopipes with Redox-Active Polyoxometalates for High Energy Density Supercapacitors

    No full text
    Hybrid materials are very attractive for the fabrication of high-performance supercapacitors. Here, we have explored organic-inorganic hybrid materials based on open-end porous 1 D polypyrrole nanopipes (PPy-NPipes) and heteropolyoxometalates (phosphotungstate ([PWO], PW) or phosphomolybdate ([PMoO], PMo)) that display excellent areal capacitances. Two different hybrid materials (PMo@PPy and PW@PPy) were effectively synthesized and used for symmetric supercapacitors. The anchoring of the inorganic nanoclusters onto the conducting polymer nanopipes led to electrodes that stood up to our best expectations exhibiting outstanding areal capacitances that are almost 1.5 to 2 fold higher than that of pristine PPy-NPipes. In addition, symmetric cells based on PMo@PPy and PW@PPy hybrid electrodes were fabricated and showed significant improvement in cell performance with very high volumetric capacitances in the range of 6.3-6.8 F cm(considering the volume of whole device). Indeed, they provide extended potential windows in acidic electrolytes (up to 1.5 V) which led to ultrahigh energy densities of 1.5 and 2.2 mWh cmfor PMo@PPy and PW@PPy cells, respectively. Thus, these unique organic-inorganic hybrid symmetric cells displayed extraordinary electrochemical performances far exceeding those of more complex asymmetric systems

    Abstracts of Scientifica 2022

    No full text
    This book contains the abstracts of the papers presented at Scientifica 2022, Organized by the Sancheti Institute College of Physiotherapy, Pune, Maharashtra, India, held on 12–13 March 2022. This conference helps bring researchers together across the globe on one platform to help benefit the young researchers. There were six invited talks from different fields of Physiotherapy and seven panel discussions including over thirty speakers across the globe which made the conference interesting due to the diversity of topics covered during the conference. Conference Title:  Scientifica 2022Conference Date: 12–13 March 2022Conference Location: Sancheti Institute College of PhysiotherapyConference Organizer: Sancheti Institute College of Physiotherapy, Pune, Maharashtra, Indi
    corecore