189 research outputs found

    Photovoltage Bleaching in Bulk Heterojunction Solar Cells through Occupation of the Charge Transfer State

    Full text link
    We observe a strong peak in the capacitive photocurrent of a MDMO-PPV / PCBM bulk heterojunction solar cell for excitation below the absorbance threshold energy. Illumination at the peak energy blocks charge capture at other wavelengths, and causes the photovoltage to drop dramatically. These results suggest that the new peak is due to a charge transfer state, which provides a pathway for charge separation and photocurrent generation in the solar cell.Comment: submitted to Physical Review Letter

    Importance of Vacancies and Doping in the Hole-Transporting Nickel Oxide Interface with Halide Perovskites

    Get PDF
    International audienceNickel oxide (NiO) is a commonly used contact material for a variety of thin-film optoelectronic technologies based on organic or hybrid materials. In such setups, interfaces play a crucial role as they can reduce, if not kill, the device performances by bringing additional traps or energy barriers, hindering the extraction of charge carriers from the active layer. Here, we computationally examine a prototype halide perovskite architecture, NiO/MAPbI (MA = CHNH), that has shown excellent photovoltaic performance and, in particular, a large open-circuit voltage. We show that efficient hole collection is achieved only when considering the role of vacancies induced by standard material deposition techniques. Specifically, Ni vacancies lead to nearly perfect valence band energy level alignment between the active layer and the contact material. Finally, we show how Li doping greatly improves the performances of the device and further propose alternative dopants. Our results suggest the high tunability of NiO interfaces for the design of optimized optoelectronic devices far beyond that of halide perovskites

    Cavity-control of interlayer excitons in van der Waals heterostructures

    Get PDF
    Monolayer transition metal dichalcogenides integrated in optical microcavities host exciton-polaritons as a hallmark of the strong light-matter coupling regime. Analogous concepts for hybrid light-matter systems employing spatially indirect excitons with a permanent electric dipole moment in heterobilayer crystals promise realizations of exciton-polariton gases and condensates with inherent dipolar interactions. Here, we implement cavity-control of interlayer excitons in vertical MoSe2-WSe2 heterostructures. Our experiments demonstrate the Purcell effect for heterobilayer emission in cavity-modified photonic environments, and quantify the light-matter coupling strength of interlayer excitons. The results will facilitate further developments of dipolar exciton-polariton gases and condensates in hybrid cavity - van der Waals heterostructure systems

    Cavity-control of interlayer excitons in van der Waals heterostructures

    Get PDF
    Monolayer transition metal dichalcogenides integrated in optical microcavities host exciton-polaritons as a hallmark of the strong light-matter coupling regime. Analogous concepts for hybrid light-matter systems employing spatially indirect excitons with a permanent electric dipole moment in heterobilayer crystals promise realizations of exciton-polariton gases and condensates with inherent dipolar interactions. Here, we implement cavity-control of interlayer excitons in vertical MoSe2-WSe2 heterostructures. Our experiments demonstrate the Purcell effect for heterobilayer emission in cavity-modified photonic environments, and quantify the light-matter coupling strength of interlayer excitons. The results will facilitate further developments of dipolar exciton-polariton gases and condensates in hybrid cavity – van der Waals heterostructure systems

    Polariton hyperspectral imaging of two-dimensional semiconductor crystals

    Get PDF
    Atomically thin crystals of transition metal dichalcogenides (TMDs) host excitons with strong binding energies and sizable light-matter interactions. Coupled to optical cavities, monolayer TMDs routinely reach the regime of strong light-matter coupling, where excitons and photons admix coherently to form polaritons up to room temperature. Here, we explore the two-dimensional nature of TMD polaritons with scanning-cavity hyperspectral imaging. We record a spatial map of polariton properties of extended WS2 monolayers coupled to a tunable micro cavity in the strong coupling regime, and correlate it with maps of exciton extinction and fluorescence taken from the same flake with the cavity. We find a high level of homogeneity, and show that polariton splitting variations are correlated with intrinsic exciton properties such as oscillator strength and linewidth. Moreover, we observe a deviation from thermal equilibrium in the resonant polariton population, which we ascribe to non-Markovian polariton-phonon coupling. Our measurements reveal a promisingly consistent polariton landscape, and highlight the importance of phonons for future polaritonic devices

    Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging

    Get PDF
    During the past decades, major advances have been made in both the generation and detection of infrared light; however, its efficient wavefront manipulation and information processing still encounter great challenges. Efficient and fast optoelectronic modulators and spatial light modulators are required for mid-infrared imaging, sensing, security screening, communication and navigation, to name a few. However, their development remains elusive, and prevailing methods reported so far have suffered from drawbacks that significantly limit their practical applications. In this study, by leveraging graphene and metasurfaces, we demonstrate a high-performance free-space mid-infrared modulator operating at gigahertz speeds, low gate voltage and room temperature. We further pixelate the hybrid graphene metasurface to form a prototype spatial light modulator for high frame rate single-pixel imaging, suggesting orders of magnitude improvement over conventional liquid crystal or micromirror-based spatial light modulators. This work opens up the possibility of exploring wavefront engineering for infrared technologies for which fast temporal and spatial modulations are indispensable

    Polariton hyperspectral imaging of two-dimensional semiconductor crystals

    Get PDF
    Atomically thin crystals of transition metal dichalcogenides (TMDs) host excitons with strong binding energies and sizable light-matter interactions. Coupled to optical cavities, monolayer TMDs routinely reach the regime of strong light-matter coupling, where excitons and photons admix coherently to form quasiparticles known as polaritons up to room temperature. Here, we explore the two-dimensional nature of TMD polaritons with cavity-assisted hyperspectral imaging. Using extended WS2_2 monolayers, we establish the regime of strong coupling with a scanning microcavity to map out polariton properties and correlate their spatial features with intrinsic and extrinsic effects. We find a high level of homogeneity, and show that polariton splitting variations are correlated with intrinsic exciton properties such as oscillator strength and linewidth. Moreover, we observe a deviation from thermal equilibrium in the resonant polariton population, which we ascribe to non-perturbative polariton-phonon coupling. Our measurements reveal a promisingly consistent polariton landscape, and highlight the importance of phonons for future polaritonic devices.Comment: 10 pages, 7 figure

    Rapid spin depolarization in the layered 2D Ruddlesden Popper perovskite (BA)(MA)PbI

    Full text link
    We report temperature-dependent spectroscopy on the layered (n=4) two-dimensional (2D) Ruddlesden-Popper perovskite (BA)(MA)PbI. Helicity-resolved steady-state photoluminescence (PL) reveals no optical degree of polarization. Time-resolved PL shows a photocarrier lifetime on the order of nanoseconds. From simultaneaously recorded time-resolved differential reflectivity (TRΔ\DeltaR) and time-resolved Kerr ellipticity (TRKE), a photocarrier lifetime of a few nanoseconds and a spin dephasing time on the order of picoseconds was found. This stark contrast in lifetimes clearly explains the lack of spin polarization in steady-state PL. While we observe clear temperature-dependent effects on the PL dynamics that can be related to structural dynamics, the spin dephasing is nearly T-independent. Our results highlight that spin dephasing in 2D (BA)(MA)PbI occurs at time scales faster than the exciton recombination time, which poses a bottleneck for applications aimingto utilize this degree of freedom
    • …
    corecore