114 research outputs found

    Combustion characteristics of rice bran oil biodiesel in an oil burner

    Get PDF
    The concept of biodiesel as an alternative fuel is not an overnight thought, but the escalating prices, pungent emission gases and non-ecological behavior of fossil fuels has constrained the researchers to take the necessary steps. Biodiesels which are renewable in nature and having environmental friendly attribute have shown the potential to be the perfect replacement for the diesel fuels. Similarly, this study demonstrates the characteristics of Rice Bran Oil (RBO) which can be used as a latent substitute for diesel products. RBO is a vegetable oil, which is extracted from the rice bran (by-product of rice grain). Since rice is the staple diet for more than half of the world population, the quantity of RBO that can be extracted is enormous. In this study, the converted RBO into biodiesel (RBOBD) was blended with diesel to produce B5, B15 and B25 to determine physical properties and combustion performance. Owing to highly packed molecules of RBOBD, the properties such as density, kinematic viscosity and surface tension are higher in RBOBD and its blends than diesel. In contrast, the calorific value is lower. In the combustion test, the highest wall temperature is achieved at stoichiometric fuel mixture, while among the fuels, the wall temperature decreases as the biodiesel proportion increases in the blends. Moreover, in B25, emissions such as CO and SO2 are 68% and 50% lower than that of diesel respectively. However, due to the additional oxygen present in the biodiesel structure, NOx emission of B25 is 15.67% higher than diesel

    Development of an innovative interlocking load bearing hollow block system in Malaysia

    Get PDF
    The paper describes the development of a new interlocking hollow block masonry system appropriate for load bearing masonry wall construction. The developed system is an alternative to the traditional bonded masonry system where the blocks in the wall are integrated through mortar layers. In the system developed, the blocks are stacked on one another and three-dimensional interlocking protrusions are provided in the blocks to integrate the blocks into walls. This paper includes the background, concept and procedure used to develop an efficient interlocking hollow block system, which may be used in the construction of load bearing walls. Twenty-one different block models have been investigated and analysed with respect to weight, bearing and shear areas, shape, ease of production, ability to accommodate vertical and horizontal reinforcing stabilising ties and efficiency of the interlocking mechanism under imposed loads. The blocks, developed under the name ‘PUTRA BLOCK’, have been used to construct a single-storey house at Universiti Putra Malaysia. The system provides a fast, easy and an accurate building system

    Prestasi pembakaran biodiesel berasaskan minyak bunga matahari ke atas pembakar berbahan api cecair

    Get PDF
    Kajian ini menyiasat mengenai prestasi pembakaran adunan bahan api biodiesel berasaskan minyak bunga matahari dengan diesel pada nisbah B10 (biodiesel 10%, diesel 90%), B15 (biodiesel 15%, diesel 85%), B25 (biodiesel 25%, diesel 75%) dan B50 (biodiesel 50%, diesel 50%). Prestasi pembakaran bahan api ini dinilai berdasarkan kepada nilai suhu dinding kebuk pembakar, kecekapan terma pembakar serta kepekatan gas emisi yang dibebaskan seperti oksida nitrogen (NOx), sulfur dioksida (SO2), dan karbon monoksida (CO). Bahan api adunan biodiesel berasaskan minyak bunga matahari diukur dan dibandingkan dengan diesel. Semua bahan api yang diuji dibakar menggunakan kebuk pembakaran terbuka pada lima nisbah kesetaraan yang berbeza, iaitu, keadaan cair bahan api (Ф = 0.8 dan 0.9), stoikiometri (Ф = 1.0), dan kaya bahan api (Ф = 1.1 dan 1.2). Hasil kajian menunjukkan bahawa bahan api biodiesel berasaskan minyak bunga matahari terbakar pada suhu yang lebih rendah. Ini menghasilkan tenaga terma bahan api dan kecekapan terma pembakar yang lebih rendah dari diesel. Selain itu, emisi yang dihasilkan adalah lebih rendah (kecuali NOx) berbanding dengan diesel untuk semua nisbah kesetaraan. Hasilnya juga menunjukkan bahawa penggunaan biodiesel adalah berguna untuk aplikasi moden yang berbeza, khususnya di sektor industri kerana ia lebih mesra alam dan boleh dijadikan sebagai pilihan alternatif kepada bahan api petroleum. The current study investigated the combustion performance of sunflower oil-based biodiesel fuel blends with diesel at the ratio of B10 (10% biodiesel, 90% diesel), B15 (15% biodiesel, 85% diesel), B25 (25% biodiesel, 75% diesel) and B50 (50% biodiesel, 50% diesel). The combustion performance of this fuel is evaluated based on the value of the combustion chamber wall temperature, the thermal efficiency of the burner as well as the concentration of emission gases released such as nitrogen oxides (NOx), sulfur dioxide (SO2), and carbon monoxide (CO). Sunflower oil-based biodiesel blend fuel was measured and compared to diesel. All fuels tested were burned using a combustion chamber with one of its ends open, at five different equivalence ratios, namely, fuellean condition (Ф = 0.8 and 0.9), stoichiometry (Ф = 1.0), and fuel-rich (Ф = 1.1 and 1.2). The results show that sunflower oil-based biodiesel fuels burn at lower temperatures. This results in lower fuel thermal energy, and thus, lower thermal efficiency of the burner compared to diesel. Moreover, the emissions produced are lower (except for NOx) compared to diesel for all equivalence ratios. The results also show that the use of biodiesel is useful for different modern applications, especially in the industrial sector as it is more environmentally friendly and can be used as an alternative to petroleum fuels

    Granite Exploration by using Electrical Resistivity Imaging (ERI): A Case Study in Johor

    Get PDF
    Electrical Resistivity Imaging (ERI) is a tool used in near surface geophysical surveys by flowing an electric current through electrodes that were injected into the ground. The usage of electrical resistivity imaging (ERI) method dominated by geophysicist has increased tremendously in geotechnical engineering application owing to the efficiency and effectiveness of the method in term of time, cost and also data coverage. The survey performed with respect to the particular reference to ERI in determining the granite rock underneath the ground. There were seven (7) lines of ERI performed at the study area by using ABEM Terrameter LS 2 set of equipment based on Schlumberger protocol. Six (6) boreholes were also drilled to obtain engineering properties of rock at the study area. In order to develop the relationship between resistivity and engineering properties, a comparison between borehole field test result and the resistivity value were made. Results from the ERT indicated the presence of zones with high resistivity values identified as overburden soil, fractured granite and solid granite. The findings of this study also showed that the electrical resistivity imaging coupled with borehole drillings were applicable tools for the determination of the granite rock underneath the ground via subsurface profiles and such as depth of overburden soil and engineering properties of soil

    Performance of nano metaclay on chloride diffusion for ultra- high performance concrete

    Get PDF
    The major cause for corrosion of steel reinforcement embedded in concrete due to chloride penetration has been the great research effort. The use of nano metaclay in UHPC increase the strength and helps the formation of micro pores by acting as a filler thus improve the chloride penetration resistance characteristic. The aim of this study is to evaluate the chloride diffusion of UHPC using RCPT and chloride penetration depth. Four (4) series of UHPC comprised of plain UHPC and a series of nanoUHPC incorporating 1%, 3% and 5% of nano metaclay were produced. It is reported that the compressive strength of nano UHPCl exhibits higher strength up to 10% compared to plain UHPC. The results showed that UHPC containing nano metaclay also significantly affect the chloride diffusion coefficient. As regards to the results, inclusion of 1% nano metaclay in UHPC led to noticeable benefit towards strength and chloride resistance

    Combustion and emission characteristics of coconut-based biodiesel in a liquid fuel burner

    Get PDF
    This paper presents an investigation on the combustion performance of different Coconust Methyl Ester (CME) biodiesel blends with Conventional Diesel Fuel (CDF) under B5 (5% CME, 95% CDF), B15 (15% CME, 85% CDF), and B25 (25% CME, 75% CDF) conditions. The performances of these fuels were evaluated based on the temperature profiles of the combustor wall and emission concentration of Oxides of Nitrogen (NOx), Sulphur Dioxide (SO2), and Carbon Monoxide (CO). The fuel properties of the CME biodiesel blends were measured and compared with CDF. All tested fuels were combusted using an open-ended combustion chamber at three different equivalence ratios, i.e., lean fuel to air mixture (F = 0.8), stoichiometry (F = 1.0), and rich fuel to air mixture (F =1.2), using a standard solid spray fuel nozzle. The results indicated that CME biodiesel blends combust at a lower temperature and produce less emission in comparison with CDF for all equivalence ratios. Moreover, the increase of CME content in biodiesel blends reduced the temperature of the combustor wall and the emission concentration. Results also proved that the utilization of biodiesel is beneficial to various industrial applications, especially in the transportation sector due to it being environmentally friendly, and serves as an alternative to petroleum diesel fuel

    Application of response surface methodology for chloride transport properties in nano metaclayed-UHPC

    Get PDF
    The major concern on the deterioration of reinforced concrete structure is due to the corrosion of steel reinforcement from the aggressive environment such as chloride penetration. Ultra-high performance concrete (UHPC) is an advanced concrete material having ultra-high strength with excellent durability properties. Inclusion of nano metaclay in UHPC is expected to overcome the chloride transport properties in UHPC by providing nano filler effect. Two (2) assessments were conducted which are chloride content and chloride depth were examined. All the concrete specimens were immersed in 3% NaCl solution up to 365 days and the tests conducted were performed at 3, 7, 28, 56, 91, 182 and 365 days. Response surface method (RSM) was performed to evaluate the interaction and relationship between operating variables (compressive strength and nano metaclay content). Based on RSM analysis, inclusion of nano metaclay in UHPC have good relationship towards the chloride resistance characteristics and adequate durability performance in terms of chloride penetration resistance. The results exhibited that inclusion of 1% nano metaclay significantly and positively affect in term of chloride penetration resistance

    Efficient removal of partially hydrolysed polyacrylamide in polymer-flooding produced water using photocatalytic graphitic carbon nitride nanofibres

    Get PDF
    In this work, graphitic carbon nitride (GCN) photocatalyst-incorporated polyacrylonitrile (PAN) nanofibres (GCN/PAN nanofibres) were successfully prepared using electrospinning technique. The physicochemical properties of the fabricated GCN/PAN nanofibres were analysed using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), elemental analyser, X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and UV–vis–NIR spectroscopy. The photocatalytic degradation by GCN/PAN nanofibres exhibited 90.2% photodegradation of partially hydrolysed polyacrylonitrile (HPAM) after 180 min under UV light irradiation in a suspension photocatalytic reactor. The results suggest that the photodegradation of HPAM contaminant by GCN/PAN nanofibres was due to the synergetic effects of HPAM adsorption by the PAN nanofibres and HPAM photodegradation by the GCN. This study provides an insight into the removal of HPAM from polymer-flooding produced water (PFPW) through photocatalytic degradation of liquid-permeable self-supporting nanofibre mats as a potentially promising material to be used in industrial applications

    Application of MT method of Mahalanobis-Taguchi system in methadone flexi dispensing program

    Get PDF
    Patient under methadone flexi dispensing (MFlex) program are required to perform blood tests like lipid profile. To verify the patient does have a lipid disorder, a doctor analyses 3 parameters such as cholesterol, HDL cholesterol, and LDL cholesterol. However, the present system lacks a robust ecology for categorization and optimization due to imprecise measuring methods and a lack of rationale for major elements that impact diagnostic accuracy. The goal is to implement the Mahalanobis-Taguchi system (MTS) into the MFlex programme. The data was acquired at the Bandar Pekan clinic and included 34 lipid profile measures. For classification and optimization, two categories of MTS techniques are being used, which are RT-Method and T-Method. As a result of the lipid profile analysis, the healthy Mahalanobis distance (MD) is 1.0000, whereas the unhealthy MD is 79.5876. Positive contributions are made by parameters 1, 3, 4, 6, 7, 8, 9, 11, 12, 17, 18, 23, 26, 27, 28, 30, 31, 33, and 34. 15 unknown samples were diagnosed with varying degrees of positive and negative contribution to obtain a smaller MD. The best recommended way has been typed 5 from overall 6 modifications. Finally, the pharmacist acknowledged that MTS could tackle the issue of MFlex programme categorization
    corecore