28 research outputs found

    A novel tiki-taka algorithm for engineering optimisation

    Get PDF
    Metaheuristic algorithm inspired by football playing style, tiki-tak

    Multi-objective discrete particle swarm optimisation algorithm for integrated assembly sequence planning and assembly line balancing

    Get PDF
    In assembly optimisation, assembly sequence planning and assembly line balancing have been extensively studied because both activities are directly linked with assembly efficiency that influences the final assembly costs. Both activities are categorised as NP-hard and usually performed separately. Assembly sequence planning and assembly line balancing optimisation presents a good opportunity to be integrated, considering the benefits such as larger search space that leads to better solution quality, reduces error rate in planning and speeds up time-to-market for a product. In order to optimise an integrated assembly sequence planning and assembly line balancing, this work proposes a multi-objective discrete particle swarm optimisation algorithm that used discrete procedures to update its position and velocity in finding Pareto optimal solution. A computational experiment with 51 test problems at different difficulty levels was used to test the multi-objective discrete particle swarm optimisation performance compared with the existing algorithms. A statistical test of the algorithm performance indicates that the proposed multi-objective discrete particle swarm optimisation algorithm presents significant improvement in terms of the quality of the solution set towards the Pareto optimal set

    An integrated representation scheme for assembly sequence planning and assembly line balancing

    Get PDF
    In a typical assembly optimisation, Assembly Sequence Planning and Assembly Line Balancing are performed independently. However, competition has compelled the manufacturer to innovate by integrating the optimisation of both problems. To incorporate ASP and ALB optimisations into a single integrated optimisation, a clear prerequisite is the availability of integrated ASP and ALB representation. Although many assembly representation works has been proposed, none of them fully meet the requirements of integrated optimisation because they were developed independently from various needs. In this paper, an integrated representation scheme for ASP and ALB that incorporate essential optimisation information is developed. The proposed representation scheme is built based on assembly tasks and represented using precedence graph and data matrix. The outcome from presented example showed that the information for ASP and ALB optimisation can be integrated and represented using task based precedence graph and data matrix, without discarding important attributes

    Comparison of sequential and integrated optimisation approaches for ASP and ALB

    Get PDF
    Combining Assembly Sequence Planning (ASP) and Assembly Line Balancing (ALB) is now of increasing interest. The customary approach is the sequential approach, where ASP is optimised before ALB. Recently, interest in the integrated approach has begun to pick up. In an integrated approach, both ASP and ALB are optimised at the same time. Various claims have been made regarding the benefits of integrated optimisation compared with sequential optimisation, such as access to a larger search space that leads to better solution quality, reduced error rate in planning and expedited product time-to-market. These benefits are often cited but no existing work has substantiated the claimed benefits by publishing a quantitative comparison between sequential and integrated approaches. This paper therefore compares the sequential and integrated optimisation approaches for ASP and ALB using 51 test problems. This is done so that the behaviour of each approach in optimising ASP and ALB problems at different difficulty levels can be properly understood. An algorithm named Multi-Objective Discrete Particle Swarm Optimisation (MODPSO) is applied in both approaches. For ASP, the optimisation results indicate that the integrated approach is suitable to be used in small and medium-sized problems, according to the number of non-dominated solution and error ratio indicators. Meanwhile, the sequential approach converges more quickly in large-sized problems. For pure ALB, the integrated approach is preferable in all cases. When both ASP and ALB are considered, the integrated approach is superior to the sequential approach

    A review of assembly line balancing optimisation with energy consideration using meta-heuristic algorithms

    Get PDF
    Energy utilisation is one of the global trending issues. Various approaches have been introduced to minimise energy utilisation especially in the manufacturing sector, which is the largest consumer sector. One of the approaches includes the consideration of energy utilisation in the Assembly Line Balancing (ALB) optimisation. This paper reviews the ALB with energy consideration from 2012 to 2020. The selected articles were limited to problems solved using meta-heuristic algorithms. The review mainly focusses on the soft computing aspect such as problem variant, optimisation objectives, energy modelling and optimisation algorithm for ALB with energy consideration. Based on the review, the ALB with energy consideration was able to reduce energy utilisation up to 11.9%. It was found that the contribution in future ALB with energy research will be human-oriented, either social factor consideration in optimisation or energy utilisation modelling for workers. In addition, the effort to introduce an algorithm with efficient performance must be pursued because ALB problems have become more complicated. The findings from this review could assist future researchers to align their research direction with the observed trend. This paper also provides the research gap and research opportunities in the future

    Assembly line balancing with energy consumption optimization using Substituted Tiki Taka Algorithm

    Get PDF
    Assembly line balancing is assigning tasks to workstations in a production line to achieve optimal productivity. In recent years, the importance of energy studies in assembly line balancing has gained significant attention. Most existing publications focused on energy consumption in robotic assembly line balancing. This paper focuses on assembly line balancing with energy consumption in semi-automatic operation. The algorithm serves to improve the exploration to achieve a high-quality solution in a non-convex combinatorial problem, such as assembly line balancing with energy consumption. A novel approach called the Substituted Tiki-Taka Algorithm is introduced by incorporating a substitution mechanism to enhance exploration, thus improving the combinatorial optimization process. To evaluate the effectiveness of the Substituted Tiki-Taka Algorithm, a computational experiment is conducted using assembly line balancing with energy consumption benchmark problems. Additionally, an industrial case study is undertaken to validate the proposed model and algorithm. The results demonstrate that the Substituted Tiki-Taka Algorithm outperforms other existing algorithms in terms of line efficiency and energy consumption reduction. The findings from the case study indicate that implementing the Substituted Tiki-Taka Algorithm significantly increases line efficiency while simultaneously reducing energy consumption. These results highlight the potential of the proposed algorithm to positively impact manufacturing operations by achieving a balance between productivity and energy efficiency in assembly line systems

    Hybrid flow shop scheduling problem with energy utilization using non-dominated sorting genetic algorithm-III (NSGA-III) optimization

    Get PDF
    Hybrid flow shop scheduling (HFS) is an on sought problem modelling for production manufacturing. Due to its impact on productivity, researchers from different backgrounds have been attracted to solve its optimum solution. The HFS is a complex dilemma and provides ample solutions, thus inviting researchers to propose niche optimization methods for the problem. Recently, researchers have moved on to multi-objective solutions. In real-world situations, HFS is known for multi-objective problems, and consequently, the need for optimum solutions in multi-objective HFS is a necessity. Regarding sustainability topic, energy utilization is mainly considered as one of the objectives, including the common makespan criteria. This paper presents the existing multi-objective approach for solving energy utilization and makespan problems in HFS scheduling using Non-Dominated Sorting Genetic Algorithm-III (NSGA-III), and a comparison to other optimization models was subjected for analysis. The model was compared with the most sought algorithm and latest multi-objective algorithms, Strength Pareto Evolutionary Algorithm 2 (SPEA -II), Multi-Objective Algorithm Particle Swarm Optimization (MOPSO), Pareto Envelope-based Selection Algorithm II (PESA-II) and Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D). The research interest starts with problem modelling, followed by a computational experiment with an existing multi-objective approach conducted using twelve HFS benchmark problems. Then, a case study problem is presented to assess all models. The numerical results showed that the NSGA-III obtained 50% best overall for distribution performance metrics and 42% best in convergence performance metrics for HFS benchmark problems. In addition, the case study results show that NSGA-III obtained the best overall convergence and distribution performance metrics. The results show that NSGA-III can search for the best fitness solution without compromising makespan and total energy utilization. In the future, these multi-objective algorithms’ potential can be further investigated for hybrid flow shop scheduling problems

    Cost-based hybrid flow shop scheduling with uniform machine optimization using an improved tiki-taka algorithm

    Get PDF
    Cost is the foremost factor in decision-making for profit-driven organizations. However, hybrid flow shop scheduling (HFSS) research rarely prioritizes cost as its optimization objective. Existing studies primarily focus on electricity costs linked to machine utilization. This paper introduces a comprehensive cost-based HFSS model, encompassing electricity, labor, maintenance, and penalty costs. Next, the Tiki-Taka Algorithm (TTA) is improved by increasing the exploration capability to optimize the problem. The cost-based HFSS model and TTA algorithm have been tested using benchmark and case study problems. The results indicated that the TTA consistently outperforms other algorithms. It delivers the best mean fitness and better solution distribution. In industrial contexts, the TTA able to reduces costs by 2.8% to 12.0% compared to other approaches. This holistic cost-based HFSS model empowers production planners to make more informed decisions. Furthermore, the improved TTA shows promise for broader applicability in various combinatorial optimization domains

    Modelling and Optimization of Energy Efficient Assembly Line Balancing Using Modified Moth Flame Optimizer

    Get PDF
    Energy utilization is a global issue due to the reduction of fossil resources and also negative environmental effect. The assembly process in the manufacturing sector needs to move to a new dimension by taking into account energy utilization when designing the assembly line. Recently, researchers studied assembly line balancing (ALB) by considering energy utilization. However, the current works were limited to robotic assembly line problem. This work has proposed a model of energy efficient ALB (EE-ALB) and optimize the problem using a new modified moth flame optimizer (MMFO). The MMFO introduces the best flame concept to guide the global search direction. The proposed MMFO is tested by using 34 cases from benchmark problems. The numerical experiment results showed that the proposed MMFO, in general, is able to optimize the EE-ALB problem better compared to five comparison algorithms within reasonable computational time.  Statistical test indicated that the MMFO has a significant performance in 75% of the cases. The proposed model can be a guideline for manufacturer to set up a green assembly line in future
    corecore