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Abstract 

Combining Assembly Sequence Planning (ASP) and Assembly Line Balancing (ALB) is now of increasing interest. The customary approach is 
the sequential approach, where ASP is optimised before ALB. Recently, interest in the integrated approach has begun to pick up. In an 
integrated approach, both ASP and ALB are optimised at the same time. Various claims have been made regarding the benefits of integrated 
optimisation compared with sequential optimisation, such as access to a larger search space that leads to better solution quality, reduced error 
rate in planning and expedited product time-to-market. These benefits are often cited but no existing work has substantiated the claimed 
benefits by publishing a quantitative comparison between sequential and integrated approaches. This paper therefore compares the sequential 
and integrated optimisation approaches for ASP and ALB using 51 test problems. This is done so that the behaviour of each approach in 
optimising ASP and ALB problems at different difficulty levels can be properly understood. An algorithm named Multi-Objective Discrete 
Particle Swarm Optimisation (MODPSO) is applied in both approaches. For ASP, the optimisation results indicate that the integrated approach 
is suitable to be used in small and medium-sized problems, according to the number of non-dominated solution and error ratio indicators. 
Meanwhile, the sequential approach converges more quickly in large-sized problems. For pure ALB, the integrated approach is preferable in all 
cases. When both ASP and ALB are considered, the integrated approach is superior to the sequential approach. 
 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of The 50th CIRP Conference on Manufacturing Systems. 
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1. Introduction 

Assembly optimisation involves bringing and joining parts 
and/or sub-assemblies to make the assembly process as 
efficient as possible [1]. Assembly Sequence Planning (ASP) 
and Assembly Line Balancing (ALB) are classified to be 
among major topics in assembly optimisation because both 
are directly related to assembly efficiency [2]. Traditionally, 
the ASP and ALB activities are optimised independently since 
both activities occur in different stages [3]. This approach is 
known as sequential optimisation, where the ASP is optimised 
before ALB.  Recently, researchers have discovered the 
benefits of solving and optimising ASP and ALB problems 
together [4], [5], leading to an increased research focus on 

testing new or improved algorithms that operate on these 
combined problems [1], [6]–[8].  

Various claims have been made regarding the benefits of 
integrated optimisation compared with sequential optimisation 
for ASP and ALB. In one previous work, it was claimed that 
the integrated ASP and ALB will enhance the quality of the 
solutions [4]. This is due to avoidance of reduction of the size 
of search space for ALB. In sequential optimisation, the 
search space for the second activity (i.e. ALB) will be 
tremendously reduced because it is formed from the output of 
the first activity (i.e. ASP). Besides that, integrated 
optimisation will reduce the error rate in manufacturing 
planning [5], [9]. Other than that, the integrated ASP and 
ALB help designers to explore the search space in one shot. 
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This is important to reduce optimisation time for both 
activities [5]. Besides that, the integrated optimisation will 
reduce the lead time and production cost in manufacturing [8], 
[10].  

Although many benefits of integrated ASP and ALB 
optimisation were discussed by researchers, no existing work 
has substantiated the claimed benefits by publishing a 
quantitative comparison between sequential and integrated 
approaches. This work therefore will compare the quality of 
solutions of ASP and ALB optimisations that are achieved by 
sequential and integrated approaches. This work focuses on 
numerically substantiating the claim of superior solution 
quality. The rest of the stated benefits, such as reduced error 
rate and production cost, cannot be compared numerically as 
yet because they require actual implementation on actual 
assembly lines. 

Substantiating the claim of superior solution quality is 
important because of its impact on existing practice in both 
ASP and ALB. It is proof that most manufacturing assembly 
line, even those that have been optimised using sequential 
ASP and ALB, are not operating in the best possible way. 
More importantly, it provides evidence that the integrated 
ASP and ALB approach is a practical way to increase the 
assembly line productivity even further than what has been 
achieved with the standalone ASP and ALB. 

2. ASP and ALB Modelling 

According to existing ASP and ALB works, there were a 
few modelling approaches implemented. The first approach is 
to model the problem based on the assembly components 
[11], [12]. Besides that, the researchers also model the 
problem based on the assembly task [13], [14]. Meanwhile, 
some researchers also model the problem based on the 
assembly connectors [8], [15].  

In this work, we will implement task-based modelling for a 
simple version of ASP and ALB. The assembly problem 
based on assembly task is represented using a precedence 
diagram as shown in Figure 1. In this figure, the numerical 
nodes represent the assembly task, while the arcs represent 
precedence constraints among the assembly tasks. As an 
example, the outgoing arc from node 1 to nodes 2, 3 and 4 
means that the assembly task 1 needs to be completed before 
tasks 2, 3 and 4 can be started. The assembly data for this 
example is presented in Table 1.  
 

 
 
 
 

 
 

 

Fig. 1. Example of Precedence Diagram 

In Table 1, for each task there are three types of assembly 
data which are required to calculate the predefined objective 
functions. To evaluate the ASP objectives (i.e. number of 

direction change (ndc) and number of tool change (ntc), the 
assembly direction and tool information for each task are 
needed. Meanwhile, to evaluate ALB objectives (i.e. cycle 
time (ct), number of workstation (nws) and workload variation 
(v)), only the assembly time information is required.  

The main constraint in this work is precedence restriction 
which represents the compulsory sequence that must be 
followed in assembling a particular product. In handling this 
constraint, the topological sort approach is applied. 
Topological sort is an approach to establish feasible sequence 
by selecting only one available assembly task in each 
iteration. The topological sort procedure is repeated until all 
tasks are selected [16].  

Table 1. Data table for Fig. 1 

Task Direction Tool Time 

1 +x T1 4 

2 -x T2 12 

3 +x T1 7 

4 -x T3 4 

5 +x T1 12 

6 +x T1 5 

7 -x T2 12 

 

2.1. Objective Functions 

Various objective functions have been designed and used 
to optimise ASP and ALB problems. A prior literature survey 
has collated objective functions that have been used by 
researchers in both problems [17]. This survey also found that 
the most frequently used ASP optimisation objectives are to 
minimise assembly direction change and to minimise the 
number of tool change. In ALB works, the dominant 
optimisation objectives are to minimise cycle time, minimise 
number of workstation and minimise workload variance [17].  

Number of assembly direction change (ndc) is counted 
when the next assembly task requires a different assembly 
direction compared with the present assembly task. In 
equations (1) and (2), s refers to the position of a task in a 
feasible assembly sequence. 

    (1) 

 

Number of assembly tool change (ntc) is also counted when 
the next assembly task requires a different assembly tool 
compared with the present assembly task.  

    (2) 

 

Cycle time (ct) refers to the duration in between 
completion of one product unit with the following consecutive 
unit. The cycle time is important to be complied in order to 
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meet the customers’ demand [18]. In this work, the ct is 
obtained from the maximum processing time (pt) in the 
workstation. The pt is defined as a summation of assembly 
time in a particular workstation, which cannot exceed the 
maximum cycle time (ctmax).  

Number of workstation (nws) refers to the group of 
assembly station which consists of assembly task/s. The nws 
is highly dependent on the predetermined maximum cycle 
time (ctmax) for a particular assembly process. Theoretically, 
the larger the value of ctmax, the smaller the nws will be.  

Workload variation (v) measures the mean of working load 
across all workstations. It calculates the differences between 
the cycle time and the processing time in all workstations. A 
smaller v indicated better workload balance in the 
workstation. 

       

    (3) 

3. Experimental Design 

The purpose of the experiment is to compare the solution 
quality towards Pareto optimum between sequential and 
integrated optimisation. In a previous work, a tuneable test 
problem generator for ASP and ALB has been developed to 
supply sufficient test problems with a different range of 
difficulties [1]. The results indicate that the ASP and ALB 
problem difficulties can be increased using a larger number of 
tasks (n), lower Order Strength (OS), lower Time Variability 
Ratio (TV) and higher Frequency Ratio (FR).  

In this case, n refers to the number of assembly tasks. 
Meanwhile, the OS measures the relative number of 
precedence in the graph. The smaller OS means that the 
problem is more difficult to solve because of greater options. 
On the other hand, TV indicates the range of task time of all 
tasks dispersed between the assembly lines. A smaller TV 
value indicates that task times are distributed in a smaller 
range, which leads to an increased level of problem 
complexity. Finally, the FR shows how many times a similar 
direction or tool appears in the problem. Data with a higher 
FR value is harder to achieve a minimum number of changes 
because of the high variability of the data. 

 

Table 2. Level of tuneable input setting 

Level n OS TV FR 

1 15 0.6 8 0.2 

2 20 0.5 6 0.3 

3 40 0.4 4 0.4 

4 60 0.3 3 0.6 

5 80 0.2 2 0.8 
 

 

 

 

Table 3. Experimental design for ASP and ALB problem 

Reference 
Datum 

Test Problem Setting 

Problem No. n OS TV FR 

Datum 1 

1 15 0.6 8 0.2 

2 20 0.6 8 0.2 

3 40 0.6 8 0.2 

4 60 0.6 8 0.2 

5 80 0.6 8 0.2 

6 15 0.5 8 0.2 

7 15 0.4 8 0.2 

8 15 0.3 8 0.2 

9 15 0.2 8 0.2 

10 15 0.6 6 0.2 

11 15 0.6 4 0.2 

12 15 0.6 3 0.2 

13 15 0.6 2 0.2 

14 15 0.6 8 0.3 

15 15 0.6 8 0.4 

16 15 0.6 8 0.6 

17 15 0.6 8 0.8 

Datum 2 

18 40 0.4 4 0.4 

19 15 0.4 4 0.4 

20 20 0.4 4 0.4 

21 60 0.4 4 0.4 

22 80 0.4 4 0.4 

23 40 0.6 4 0.4 

24 40 0.5 4 0.4 

25 40 0.3 4 0.4 

26 40 0.2 4 0.4 

27 40 0.4 8 0.4 

28 40 0.4 6 0.4 

29 40 0.4 3 0.4 

30 40 0.4 2 0.4 

31 40 0.4 4 0.2 

32 40 0.4 4 0.3 

33 40 0.4 4 0.6 

34 40 0.4 4 0.8 

Datum 3 

35 80 0.2 2 0.8 

36 15 0.2 2 0.8 

37 20 0.2 2 0.8 

38 40 0.2 2 0.8 

39 60 0.2 2 0.8 

40 80 0.6 2 0.8 

41 80 0.5 2 0.8 

42 80 0.4 2 0.8 

43 80 0.3 2 0.8 

44 80 0.2 8 0.8 

45 80 0.2 6 0.8 

46 80 0.2 4 0.8 

47 80 0.2 3 0.8 

48 80 0.2 2 0.2 

49 80 0.2 2 0.3 

50 80 0.2 2 0.4 

51 80 0.2 2 0.6 

 
For experimental purposes, each of the input variables is 

divided into five levels from low to high difficulty values as 
in Table 2. Then, a reference datum is selected as a baseline, 
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while the rest of the problem variable settings are generated 
by changing only one variable value at a time. In total, there 
are 17 test problems (including datum) generated from one 
datum setting. In order to confirm algorithm performance, 
three different datum will be used (Level 1, 3 and 5). 
Therefore, the complete number of test problem in this 
experiment is 51 problems as shown in Table 3. The bolded 
problem setting (Problems 1, 18 and 35) represent the datum 
setting for Levels 1, 3 and 5 respectively.  

3.1. Performance Evaluation 

To evaluate the performance of each approach when 
dealing with different complexity problems, the following 
performance indicators are adopted [19], [20]:   

i. Number of non-dominated solution, ῆ: Shows the 
quantity of non-dominated solutions obtained by optimisation 
algorithm in the Pareto solution set. The larger ῆ number 
represents a better performance of algorithm. 

ii. Error Ratio, ER: ER counts the number of solutions 
which are not members of the Pareto optimal set, divided by 
the number of solutions generated by algorithm q. Smaller ER 
indicates better algorithm performance.   

iii. Generational Distance, GD: GD calculation finds an 
average distance of solution with the nearest Pareto optimal 
solution. Smaller GD value indicates better algorithm 
performance.  

iv. Spacing: Indicates the relative distances for a solution 
with another solution. Smaller Spacing index indicates better 
solution set having better spacing between each solution. 

v. Maximum Spread, Spreadmax: Measures the spread of 
solutions found by each algorithm. A higher maximum spread 
shows better algorithm.  

3.2. Optimisation Algorithm 

Various algorithms have been developed to optimise the 
combinatorial optimisation problem. In this work, we 
implement Multi-Objective Discrete Particle Swarm 
Optimisation (MODPSO) to optimise both sequential and 
integrated ASP and ALB. This algorithm is selected because 
of good performance in the ASP and ALB optimization, when 
compared with other algorithms such as Genetic Algorithm, 
Ant Colony Optimisation and Elitist Non-dominated Sorting 
Genetic Algorithm (NSGA-II) [21]. The general procedure of 
MODPSO is presented as follows. 

 
Procedure: MODPSO 
Initialisation 

 Set npar (number of particle), itermax (maximum 
number of iteration) 

 Generate initial swarm, X (position) and V (velocity) 
 Encode X into feasible solution (F) using Topological 

Sort procedure 
Evaluation 
 Evaluate objective functions 

 Apply non-dominated sorting procedure 
Update Pbest and Gbest 
 Calculate Crowding Distance (CD) within solution in 

swarm 
 Update Pbest based on maximum CD 
 Calculate Crowding Distance within non-dominated 

set 
 Update Gbest based in maximum CD 

Update X and V 
 Update X and V using: 

and   (4) 
 

      (5) 
Subjected to discrete update procedure 
End Procedure 

 
The discrete procedures to update position and velocity are 

applied in this work [22].  
 
Subtraction operator (position – position): (X1 – X2).  

If the jth element of X1, x1,j= x2,j then v1,j= 0, else v1,j = x1,j 
 
Addition operator (position + velocity): (X1

t+V1). 
If the jth element of V1, v1,j= 0 then x1,j

t+1 = x1,j
t , else x1,j

t+1 = 
v1,j 
 
Multiplication operator (coefficient x velocity): (V2= c.V1). 

If rand<c, v2 = v1, else, v2 = 0 
c [0,1] 

 
Addition operator (velocity + velocity): (V = V1 + V2)  

The jth element of V can be derived as follows: 

  (6) 

r is a random number between 0 and 1, while cp  [0, 1]. 
 
The MODPSO algorithm for sequential and integrated ASP 

and ALB problem has been coded using the MATLAB 
software. In this work, the population or swarm size is set at 
20 with 500 iterations.  

4. Results and Discussions 

Figure 2 presents the plot of performance indicators for 
sequential and integrated optimisation approaches. For the 
number of non-dominated solution in Pareto optimal set 
indicator (ῆ) and the maximum spread indicator, larger values 
show better performance, while for the remaining indicators, 
smaller values present better performance. Based on Figure 2, 
the ῆ indicator consistently indicates that the integrated 
optimisation approach produces a larger number of non-
dominated solutions in the Pareto optimal set than the 
sequential approach.  
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Fig. 2. Plot of performance indicators for sequential and integrated 
optimisation 

 
On the other hand, the ER, GD and Spacing results indicate 

the intermixed performance of sequential and integrated 
optimisation approaches. The sequential approach shows 
better performance in 69% and 67% of the problem compared 
with the integrated approach for ER and GD correspondingly. 
This percentage is calculated based on the problem with better 
performance over the total number of problems. More than 
80% of these problems are the medium and large size 
problems. Meanwhile, only 41% of the problems show better 
results for Spacing indicator using the sequential approach. In 
the meantime, 96% of the test problems come out with better 
performance using the integrated approach for Spreadmax 
indicator. 

The results of ῆ show that the integrated optimisation 
approach is able to produce a larger number of solutions in 
Pareto optimal compared with the sequential approach. This 
result is related with the size of ASP and ALB search space. 
In the integrated approach, the ASP and ALB optimisation 
share the same search space. In contrast, in the sequential 
approach, the ALB optimisation encounters a tremendously 
reduced search space since its search space consists of the 
non-dominated solutions of ASP.  This clearly precludes the 
appearance of solutions which are optimal with respect to 
ALB, but perhaps less optimal from the ASP perspective. 
Therefore, the chances to produce better solutions for an 
integrated optimisation approach is much higher compare 
with a sequential approach.  

On the other hand, the integrated approach displays a 
mixed performance in ER and GD because of the number of 
non-dominated solutions found using this approach. Although 
the number of non-dominated solutions found using the 
sequential approach is much smaller than the integrated 
approach, the solutions have a better chance to belong to the 
Pareto optimal set. This is because in the first part of 

sequential approach (i.e. ASP optimisation), only two 
objective functions are evaluated, while the remaining 
objective functions are evaluated in the second part (i.e. ALB 
optimisation). Therefore, the chances to find an ASP non-
dominated solution that is in Pareto optimum are better. This 
can be observed in some cases, where the sequential 
optimisation approach produces better results for ASP 
compared with the integrated optimisation approach. 
However, the integrated approach has consistently performed 
better or at least equal to the sequential approach in ALB 
problem. 

Although the number of non-dominated solutions found 
using the sequential approach is less than the integrated 
approach, most of the solutions found belong to the Pareto 
optimum because the fewer numbers of objective functions 
being considered in the first part of optimisation enables 
quicker convergence. For this reason, 60% of the problem 
show better GD by using the sequential optimisation 
approach.  

The Spacing indicator represents the solution uniformity 
between one solution with the nearest neighbour. This 
indicator depends on the number of solution found and also 
the solution spread. For a similar solution spread, the 
optimisation approach that comes out with a larger number of 
non-dominated solution will have better Spacing. Comparing 
the performance of sequential and integrated optimisation 
approaches using this indicator shows mixed results. There is 
no clear indication of which specific problem category is 
more suited to which approach.  

The Spreadmax value indicates a capability to explore 
extreme solutions. For this indicator, 96% of the test problem 
show better results by using the integrated approach compared 
with the sequential approach. This result is due to the size of 
the search space for integrated ASP and ALB compared with 
sequential optimisation approach. In integrated optimisation, 
the chance to explore extreme solutions for ALB is higher 
compared with the sequential optimisation approach. 

Finally, for ALB objectives, the integrated optimisation 
approach has consistently shown better or equal minimum 
values compared with sequential optimisation. The integrated 
optimisation produces better minimum values in 88% of the 
problems, while in the remaining 12% of the problems, the 
integrated and sequential optimisation approaches share 
similar minimum objective values. This finding substantiates 
the claim for the increased ability of the integrated ALB to 
find better solutions than sequential ALB. 

5. Conclusions 

This paper investigates and compares the performance of 
sequential and integrated optimisation approaches for 
Assembly Sequence Planning (ASP) and Assembly Line 
Balancing (ALB) in terms of solution quality towards Pareto 
optimum solution. In the sequential optimisation approach, 
ASP is optimised first and ALB optimisation follows, where 
the output from ASP will be the input for ALB. In contrast, 
the integrated optimisation approach optimises both ASP and 
ALB together at the same time. 
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The result from this study concludes that both sequential 
and integrated optimisation approaches have their own 
advantages. The sequential optimisation for instance has 
better Pareto optimum accuracy, but the number of solution is 
much smaller compared with the integrated approach because 
of the part by part optimisation approach. On the other hand, 
the integrated optimisation approach has a better ability to 
search for more Pareto optimum solutions and better 
exploration in the search space. This is due to the larger 
search space, especially for ALB problem. By having this 
knowledge, a proper optimisation approach can be selected 
for a particular ASP and ALB problem. 

This work has successfully investigated and compared the 
sequential and integrated optimisation approaches based on 
solution quality towards Pareto optimum. The integrated 
optimisation consistently performed better in ALB problem in 
all problem sizes. In the future, the investigation of 
optimisation approach in terms of other benefits such as 
reduced error rate and lead time in production planning is 
suggested.  
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