194 research outputs found
Snowmass Neutrino Frontier: Neutrino Interaction Cross Sections (NF06) Topical Group Report
A thorough understanding of neutrino cross sections in a wide range of
energies is crucial for the successful execution of the entire neutrino physics
program. In order to extract neutrino properties, long-baseline experiments
need an accurate determination of neutrino cross sections within their
detector(s). Since very few of the needed neutrino cross sections across the
energy spectrum are directly measured, we emphasize the need for theoretical
input and indirect measurements such as electron scattering, which would
complement direct measurements. In this report we briefly summarize the current
status of our knowledge of the neutrino cross sections and articulate needs of
the experiments, ongoing and planned, at energies ranging from CEvNS and
supernova neutrino energies to the DUNE and atmospheric neutrino energies.Comment: 38 pages, 1 figur
Transverse Emittance Reduction in Muon Beams by Ionization Cooling
Accelerated muon beams have been considered for next-generation studies of
high-energy lepton-antilepton collisions and neutrino oscillations. However,
high-brightness muon beams have not yet been produced. The main challenge for
muon acceleration and storage stems from the large phase-space volume occupied
by the beam, derived from the muon production mechanism through the decay of
pions from proton collisions. Ionization cooling is the technique proposed to
decrease the muon beam phase-space volume. Here we demonstrate a clear signal
of ionization cooling through the observation of transverse emittance reduction
in beams that traverse lithium hydride or liquid hydrogen absorbers in the Muon
Ionization Cooling Experiment (MICE). The measurement is well reproduced by the
simulation of the experiment and the theoretical model. The results shown here
represent a substantial advance towards the realization of muon-based
facilities that could operate at the energy and intensity frontiers.Comment: 23 pages and 5 figure
Demonstration of cooling by the Muon Ionization Cooling Experiment
The use of accelerated beams of electrons, protons or ions has furthered the development of nearly every scientific discipline. However, high-energy muon beams of equivalent quality have not yet been delivered. Muon beams can be created through the decay of pions produced by the interaction of a proton beam with a target. Such ‘tertiary’ beams have much lower brightness than those created by accelerating electrons, protons or ions. High-brightness muon beams comparable to those produced by state-of-the-art electron, proton and ion accelerators could facilitate the study of lepton–antilepton collisions at extremely high energies and provide well characterized neutrino beams1,2,3,4,5,6. Such muon beams could be realized using ionization cooling, which has been proposed to increase muon-beam brightness7,8. Here we report the realization of ionization cooling, which was confirmed by the observation of an increased number of low-amplitude muons after passage of the muon beam through an absorber, as well as an increase in the corresponding phase-space density. The simulated performance of the ionization cooling system is consistent with the measured data, validating designs of the ionization cooling channel in which the cooling process is repeated to produce a substantial cooling effect9,10,11. The results presented here are an important step towards achieving the muon-beam quality required to search for phenomena at energy scales beyond the reach of the Large Hadron Collider at a facility of equivalent or reduced footprint6
First demonstration of ionization cooling by the Muon Ionization Cooling Experiment
High-brightness muon beams of energy comparable to those produced by
state-of-the-art electron, proton and ion accelerators have yet to be realised.
Such beams have the potential to carry the search for new phenomena in
lepton-antilepton collisions to extremely high energy and also to provide
uniquely well-characterised neutrino beams. A muon beam may be created through
the decay of pions produced in the interaction of a proton beam with a target.
To produce a high-brightness beam from such a source requires that the phase
space volume occupied by the muons be reduced (cooled). Ionization cooling is
the novel technique by which it is proposed to cool the beam. The Muon
Ionization Cooling Experiment collaboration has constructed a section of an
ionization cooling cell and used it to provide the first demonstration of
ionization cooling. We present these ground-breaking measurements.Comment: 19 pages and 6 figure
First Measurement of Differential Charged Current Quasielasticlike νμ-Argon Scattering Cross Sections with the MicroBooNE Detector
We report on the first measurement of flux-integrated single differential cross sections for chargedcurrent
(CC) muon neutrino (νμ) scattering on argon with a muon and a proton in the final state, 40Ar
ðνμ; μpÞX. The measurement was carried out using the Booster Neutrino Beam at Fermi National
Accelerator Laboratory and the MicroBooNE liquid argon time projection chamber detector with an
exposure of 4.59 × 1019 protons on target. Events are selected to enhance the contribution of CC
quasielastic (CCQE) interactions. The data are reported in terms of a total cross section as well as single
differential cross sections in final state muon and proton kinematics.We measure the integrated per-nucleus
CCQE-like cross section (i.e., for interactions leading to a muon, one proton, and no pions above detection
threshold) of ð4.93 0.76stat 1.29sysÞ × 10−38 cm2, in good agreement with theoretical calculations. The
single differential cross sections are also in overall good agreement with theoretical predictions, except at
very forward muon scattering angles that correspond to low-momentum-transfer events.United States Department of Energy (DOE)National Science Foundation (NSF)Swiss National Science Foundation (SNSF)Science and Technology Facilities Council (STFC), part of the United Kingdom Research and InnovationRoyal Society of LondonAlbert Einstein Center for Fundamental Physics, Bern, SwitzerlandAzrieli FoundationZuckerman STEM Leadership ProgramIsrael Science FoundationVisiting Scholars Award Program of the Universities Research AssociationDE-AC02-07CH1135
- …