10 research outputs found

    Molecular authentication of green algae Caulerpa (Caulerpales, Chlorophyta) based on ITS and tufA genes from Andaman Islands, India

    Get PDF
    109-114Indigenous and non-indigenous invasive algal species introduction or prevalence is one of the major concerns to protect the native coastal environment. Globally, several studies have reported the effect of invasive alga Caulerpa on coral reefs. To establish the genetic variation between indigenous and non-indigenous invasive species, attempts have been made to develop molecular identification of Caulerpa algal species available at the Andaman Islands. In this study, 7 visually and morphologically different species belonging to the genus Caulerpa (Chlorophyta) were collected from the intertidal regions of South and Little Andaman Islands, India. The specimens were preliminarily identified based on the morphological characters and genetically mapped using ITS2 and chloroplast tufA gene markers. Six species of the Caulerpa viz. Caulerpa racemosa, C. racemosa var lamourouxii, C. racemosa var macrophysa, C. serrulata, C. fergusonii and C. microphysa were identified using ITS2 gene, and. C. mexicana var pluriseriata was identified using tufA gene. Two varieties, C. mexicana var. pluriseriata and C. racemosa var lamourouxii were found to be invasive to Indian waters. These were earlier reported in Red sea and in Phillipine waters in the pacific ocean. Further studies are needed to elucidate the genetic divergence of the Caulerpa species present in Andaman waters using different molecular markers

    Antimicrobial Potential of Epiphytic Bacteria Associated With Seaweeds of Little Andaman, India

    No full text
    Seaweeds of the intertidal regions are a rich source of surface associated bacteria and are potential source of antimicrobial molecules. In the present study, 77 epiphytic isolates from eight different algae collected from Little Andaman were enumerated. On testing for their antimicrobial activities against certain pathogens twelve isolates showed positive and six of them showed significant antimicrobial inhibition zone against Shigella boydii type 1, Shigella flexneri type 2a, Shigella dysenteriae type 5, Enterotoxigenic Escherichia coli O115, Enteropathogenic E. coli serotype O114, Vibrio cholera; O1 Ogawa, Aeromonas hydrophila, Klebsiella pneumoniae, Staphylococcus aureus. Based on the activity these six isolates (G1C, G2C, G3C, UK, UVAD, and Tor1) were identified by 16S rRNA gene sequence and were found to belong to the phyla Firmicutes and Proteobacteria. Purified antimicrobial compounds obtained from these isolates were identified by GC-MS. Furan derivatives were identified from G2C Pseudomonas stutzeri KJ849834, UVAD Alcanivorax dieselolei KJ849833, UK Vibrio sp. KJ849837, Tor1 Exiguobacterium profundum KJ849838. While 2-Pyrrolidinone, Phenol, 2, 4-bis (1, 1-dimethylethyl) were from G3C Vibrio owensii KJ849836 and (1-Allylcyclopropyl) methanol from the extracts of G1C Bacillus sp. KJ849835. The results of the present study shows that these six potent isolates isolated from the seaweeds are found to be a source of antimicrobial compounds

    DNA barcoding of False stone fish <em>Scorpaenopsis diabolus </em>(Cuvier, 1829), a new record for the Andaman Islands and India

    Get PDF
    2237-2240A specimen of the false stone fish Scorpaenopsis diabolus(Cuvier, 1829)was captured at the Burmanallah coast in the Andaman Islands, India. Identification was done combining traditional taxonomy, based on the observation and measurement of morphology traits, with DNA barcoding in an integrative taxonomy approach. On this basis, S. diabolus constitutes a new record in the faunal diversity of the Andaman Islands and India

    Marine Natural Products from Tunicates and Their Associated Microbes

    No full text
    Marine tunicates are identified as a potential source of marine natural products (MNPs), demonstrating a wide range of biological properties, like antimicrobial and anticancer activities. The symbiotic relationship between tunicates and specific microbial groups has revealed the acquisition of microbial compounds by tunicates for defensive purpose. For instance, yellow pigmented compounds, “tambjamines”, produced by the tunicate, Sigillina signifera (Sluiter, 1909), primarily originated from their bacterial symbionts, which are involved in their chemical defense function, indicating the ecological role of symbiotic microbial association with tunicates. This review has garnered comprehensive literature on MNPs produced by tunicates and their symbiotic microbionts. Various sections covered in this review include tunicates’ ecological functions, biological activities, such as antimicrobial, antitumor, and anticancer activities, metabolic origins, utilization of invasive tunicates, and research gaps. Apart from the literature content, 20 different chemical databases were explored to identify tunicates-derived MNPs. In addition, the management and exploitation of tunicate resources in the global oceans are detailed for their ecological and biotechnological implications

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl

    Green Chemistry Based Gold Nanoparticles Synthesis Using the Marine Bacterium PBCW2 and Their Multitudinous Activities.

    No full text
    Green chemistry has paved an 'avant-garde avenue' in the production and fabrication of eco-friendly stable nanoparticles employing the utilization of biological agents. In the present study we present the first report on the potential of the marine bacterium Lysinibacillus odysseyi PBCW2 for the extracellular production of gold nanoparticles (AuNPs). Utilizing a variety of methods, AuNPs in the cell-free supernatant of L. odysseyi (CFS-LBOE) were identified and their antioxidant, antibacterial, and dye-degrading properties were examined. The visual coloring of the reaction mixture to a ruby red hue showed the production of LBOE-AuNPs; validated by means of XRD, TEM, SEM, XRD, DLS, TGA, and FT-IR analysis. Additionally, the 2,2-diphenyl-1-picrylhydrazyl technique and the well diffusion assay were used to examine their dose-dependent antioxidant and antibacterial activity. These biogenic LBOE-AuNPs showed 91% dye degradation efficiency during catalytic reduction activity on BTB dye, demonstrating their versatility as options for heterogeneous catalysis

    Green Chemistry Based Gold Nanoparticles Synthesis Using the Marine Bacterium PBCW2 and Their Multitudinous Activities.

    Get PDF
    Green chemistry has paved an 'avant-garde avenue' in the production and fabrication of eco-friendly stable nanoparticles employing the utilization of biological agents. In the present study we present the first report on the potential of the marine bacterium Lysinibacillus odysseyi PBCW2 for the extracellular production of gold nanoparticles (AuNPs). Utilizing a variety of methods, AuNPs in the cell-free supernatant of L. odysseyi (CFS-LBOE) were identified and their antioxidant, antibacterial, and dye-degrading properties were examined. The visual coloring of the reaction mixture to a ruby red hue showed the production of LBOE-AuNPs; validated by means of XRD, TEM, SEM, XRD, DLS, TGA, and FT-IR analysis. Additionally, the 2,2-diphenyl-1-picrylhydrazyl technique and the well diffusion assay were used to examine their dose-dependent antioxidant and antibacterial activity. These biogenic LBOE-AuNPs showed 91% dye degradation efficiency during catalytic reduction activity on BTB dye, demonstrating their versatility as options for heterogeneous catalysis
    corecore