15 research outputs found

    Role Of Peptidylarginine Deiminase 2 (Pad2) In Epithelial Carcinogenesis And Tumor-Associated Inflammation

    Full text link
    Numerous recent studies have shown that epigenetic modifications play a significant role in cancer pathogenesis. The PADs are a family of epigenetic enzymes that catalyze citrullination, a reaction by which PADs convert peptidyl-arginine to neutral citrulline, leading to the disruption of protein-protein interactions. Our lab has found that PAD2 has a critical role in breast cancer progression. The goal of this thesis research was to further elucidate the role of PAD2 in epithelial carcinogenesis using PAD2 overexpression tumor cell lines and a MMTV-FLAG-hPAD2 transgenic mouse model. We also aimed to evaluate how PAD2 may play a direct role in regulating chronic inflammation via macrophage extracellular chromatin trap release ("ETosis"). Interestingly, we found that 40% of the MMTV-FLAG-hPAD2 overexpressing transgenic mice developed proliferative skin lesions after five months of age. The tumors expressed the transgenic form of FLAG-hPAD2 and showed increased expression for inflammatory cytokines such as IL6 and IL8. As the next step we conducted a two-stage chemical carcinogenesis study to further evaluate the predilection of MMTV-FLAG-hPAD2 mice to develop more invasive skin tumors and compare the histopathology of these tumors with the WT tumors. We found that a higher percentage of MMTV-FLAG-hPAD2 mice developed skin papillomas and the transgenic tumors were more invasive. Furthermore, hPAD2 expression levels were highly positively correlated with chemokine levels and negatively correlated with the cell adhesion markers suggesting the role of PAD2 in assisting epithelial-mesenchymal transition. We had previously shown that PAD4 isozyme in neutrophils is involved in chromatin decondensation and extracellular chromatin trap release. In this thesis research we provide evidence on how PAD2 is involved in macrophage extracellular trap (MET) release. Using in vitro macrophage culture models, we found that PAD2 is critical in functional MET release and that METs contain high levels of histone H4 citrulline 3 (H4Cit3) modification. Using human tongue SCC tissue, we show that CD68+ macrophage associated ETs exist in tumor tissue and are highly positive for citrullinated histones. Additionally, we show that PAD2-rich macrophages associated with chronic subclinical inflammation in adipose tissue also release METs suggesting the significant role of PAD2 in chronic inflammation via MET release. Collectively, these studies provide strong experimental evidence establishing PAD2 as a potential oncogene, a therapeutic target for immunomodulation and a regulator of obesity and tumor associated inflammation

    Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis.

    Get PDF
    Obesity and extracellular matrix (ECM) density are considered independent risk and prognostic factors for breast cancer. Whether they are functionally linked is uncertain. We investigated the hypothesis that obesity enhances local myofibroblast content in mammary adipose tissue and that these stromal changes increase malignant potential by enhancing interstitial ECM stiffness. Indeed, mammary fat of both diet- and genetically induced mouse models of obesity were enriched for myofibroblasts and stiffness-promoting ECM components. These differences were related to varied adipose stromal cell (ASC) characteristics because ASCs isolated from obese mice contained more myofibroblasts and deposited denser and stiffer ECMs relative to ASCs from lean control mice. Accordingly, decellularized matrices from obese ASCs stimulated mechanosignaling and thereby the malignant potential of breast cancer cells. Finally, the clinical relevance and translational potential of our findings were supported by analysis of patient specimens and the observation that caloric restriction in a mouse model reduces myofibroblast content in mammary fat. Collectively, these findings suggest that obesity-induced interstitial fibrosis promotes breast tumorigenesis by altering mammary ECM mechanics with important potential implications for anticancer therapies

    Identification of PADI2 as a potential breast cancer biomarker and therapeutic target.

    Get PDF
    BACKGROUND: We have recently reported that the expression of peptidylarginine deiminase 2 (PADI2) is regulated by EGF in mammary cancer cells and appears to play a role in the proliferation of normal mammary epithelium; however, the role of PADI2 in the pathogenesis of human breast cancer has yet to be investigated. Thus, the goals of this study were to examine whether PADI2 plays a role in mammary tumor progression, and whether the inhibition of PADI activity has anti-tumor effects. METHODS: RNA-seq data from a collection of 57 breast cancer cell lines was queried for PADI2 levels, and correlations with known subtype and HER2/ERBB2 status were evaluated. To examine PADI2 expression levels during breast cancer progression, the cell lines from the MCF10AT model were used. The efficacy of the PADI inhibitor, Cl-amidine, was tested in vitro using MCF10DCIS cells grown in 2D-monolayers and 3D-spheroids, and in vivo using MCF10DCIS tumor xenografts. Treated MCF10DCIS cells were examined by flow-cytometry to determine the extent of apoptosis and by RT2 Profiler PCR Cell Cycle Array to detect alterations in cell cycle associated genes. RESULTS: We show by RNA-seq that PADI2 mRNA expression is highly correlated with HER2/ERBB2 (p = 2.2 x 106) in luminal breast cancer cell lines. Using the MCF10AT model of breast cancer progression, we then demonstrate that PADI2 expression increases during the transition of normal mammary epithelium to fully malignant breast carcinomas, with a strong peak of PADI2 expression and activity being observed in the MCF10DCIS cell line, which models human comedo-DCIS lesions. Next, we show that a PADI inhibitor, Cl-amidine, strongly suppresses the growth of MCF10DCIS monolayers and tumor spheroids in culture. We then carried out preclinical studies in nude (nu/nu) mice and found that Cl-amidine also suppressed the growth of xenografted MCF10DCIS tumors by more than 3-fold. Lastly, we performed cell cycle array analysis of Cl-amidine treated and control MCF10DCIS cells, and found that the PADI inhibitor strongly affects the expression of several cell cycle genes implicated in tumor progression, including p21, GADD45alpha, and Ki67. CONCLUSION: Together, these results suggest that PADI2 may function as an important new biomarker for HER2/ERBB2+ tumors and that Cl-amidine represents a new candidate for breast cancer therapy

    Simultaneous evaluation of treatment efficacy and toxicity for bispecific T-cell engager therapeutics in a humanized mouse model.

    Get PDF
    Immuno-oncology (IO)-based therapies such as checkpoint inhibitors, bi-specific antibodies, and CAR-T-cell therapies have shown significant success in the treat- ment of several cancer indications. However, these therapies can result in the de- velopment of severe adverse events, including cytokine release syndrome (CRS). Currently, there is a paucity of in vivo models that can evaluate dose-response relationships for both tumor control and CRS-related safety issues. We tested an in vivo PBMC humanized mouse model to assess both treatment efficacy against specific tumors and the concurrent cytokine release profiles for individual human donors after treatment with a CD19xCD3 bispecific T-cell engager (BiTE). Using this model, we evaluated tumor burden, T-cell activation, and cytokine release in response to bispecific T-cell-engaging antibody in humanized mice generated with different PBMC donors. The results show that PBMC engrafted NOD-scid Il2rgnull mice lacking expression of mouse MHC class I and II (NSG-MHC-DKO mice) and implanted with a tumor xenograft predict both efficacy for tumor control by CD19xCD3 BiTE and stimulated cytokine release. Moreover, our find- ings indicate that this PBMC-engrafted model captures variability among donors for tumor control and cytokine release following treatment. Tumor control and cytokine release were reproducible for the same PBMC donor in separate experi- ments. The PBMC humanized mouse model described here is a sensitive and re- producible platform that identifies specific patient/cancer/therapy combinations for treatment efficacy and development of complications

    Obesity-dependent changes in interstitial ECM mechanics promote breast tumorigenesis

    Get PDF
    Obesity and extracellular matrix (ECM) density are considered independent risk and prognostic factors for breast cancer. Whether they are functionally linked is uncertain. We investigated the hypothesis that obesity enhances local myofibroblast content in mammary adipose tissue and that these stromal changes increase malignant potential by enhancing interstitial ECM stiffness. Indeed, mammary fat of both diet- and genetically induced mouse models of obesity were enriched for myofibroblasts and stiffness-promoting ECM components. These differences were related to varied adipose stromal cell (ASC) characteristics because ASCs isolated from obese mice contained more myofibroblasts and deposited denser and stiffer ECMs relative to ASCs from lean control mice. Accordingly, decellularized matrices from obese ASCs stimulated mechanosignaling and thereby the malignant potential of breast cancer cells. Finally, the clinical relevance and translational potential of our findings were supported by analysis of patient specimens and the observation that caloric restriction in a mouse model reduces myofibroblast content in mammary fat. Collectively, these findings suggest that obesity-induced interstitial fibrosis promotes breast tumorigenesis by altering mammary ECM mechanics with important potential implications for anticancer therapies

    Potential Role of Peptidylarginine Deiminase Enzymes and Protein Citrullination in Cancer Pathogenesis

    Get PDF
    The peptidylarginine deiminases (PADs) are a family of posttranslational modification enzymes that catalyze the conversion of positively charged protein-bound arginine and methylarginine residues to the uncharged, nonstandard amino acid citrulline. This enzymatic activity is referred to as citrullination or, alternatively, deimination. Citrullination can significantly affect biochemical pathways by altering the structure and function of target proteins. Five mammalian PAD family members (PADs 1–4 and 6) have been described and show tissue-specific distribution. Recent reviews on PADs have focused on their role in autoimmune diseases. Here, we will discuss the potential role of PADs in tumor progression and tumor-associated inflammation. In the context of cancer, increasing clinical evidence suggests that PAD4 (and possibly PAD2) has important roles in tumor progression. The link between PADs and cancer is strengthened by recent findings showing that treatment of cell lines and mice with PAD inhibitors significantly suppresses tumor growth and, interestingly, inflammatory symptoms. At the molecular level, transcription factors, coregulators, and histones are functional targets for citrullination by PADs, and citrullination of these targets can affect gene expression in multiple tumor cell lines. Next generation isozyme-specific PAD inhibitors may have therapeutic potential to regulate both the inflammatory tumor microenvironment and tumor cell growth

    Identification of PADI2 as a potential breast cancer biomarker and therapeutic target

    No full text
    Abstract Background We have recently reported that the expression of peptidylarginine deiminase 2 (PADI2) is regulated by EGF in mammary cancer cells and appears to play a role in the proliferation of normal mammary epithelium; however, the role of PADI2 in the pathogenesis of human breast cancer has yet to be investigated. Thus, the goals of this study were to examine whether PADI2 plays a role in mammary tumor progression, and whether the inhibition of PADI activity has anti-tumor effects. Methods RNA-seq data from a collection of 57 breast cancer cell lines was queried for PADI2 levels, and correlations with known subtype and HER2/ERBB2 status were evaluated. To examine PADI2 expression levels during breast cancer progression, the cell lines from the MCF10AT model were used. The efficacy of the PADI inhibitor, Cl-amidine, was tested in vitro using MCF10DCIS cells grown in 2D-monolayers and 3D-spheroids, and in vivo using MCF10DCIS tumor xenografts. Treated MCF10DCIS cells were examined by flow-cytometry to determine the extent of apoptosis and by RT2 Profiler PCR Cell Cycle Array to detect alterations in cell cycle associated genes. Results We show by RNA-seq that PADI2 mRNA expression is highly correlated with HER2/ERBB2 (p = 2.2 × 106) in luminal breast cancer cell lines. Using the MCF10AT model of breast cancer progression, we then demonstrate that PADI2 expression increases during the transition of normal mammary epithelium to fully malignant breast carcinomas, with a strong peak of PADI2 expression and activity being observed in the MCF10DCIS cell line, which models human comedo-DCIS lesions. Next, we show that a PADI inhibitor, Cl-amidine, strongly suppresses the growth of MCF10DCIS monolayers and tumor spheroids in culture. We then carried out preclinical studies in nude (nu/nu) mice and found that Cl-amidine also suppressed the growth of xenografted MCF10DCIS tumors by more than 3-fold. Lastly, we performed cell cycle array analysis of Cl-amidine treated and control MCF10DCIS cells, and found that the PADI inhibitor strongly affects the expression of several cell cycle genes implicated in tumor progression, including p21, GADD45α, and Ki67. Conclusion Together, these results suggest that PADI2 may function as an important new biomarker for HER2/ERBB2+ tumors and that Cl-amidine represents a new candidate for breast cancer therapy.</p
    corecore