11 research outputs found

    Comparação entre diferentes equações antropométricas e a pletismografia para estimar o percentual de gordura de atletas masculinos de Taekwondo

    Get PDF
    TCC (Graduação) - Universidade Federal de Santa Catarina. Centro de Desportos. Educação Física - Bacharelado.O Taekwondo é um esporte de combate oriundo da Coréia, atualmente integrao quadro de esportes olímpicos, no qual tem suas lutas divididas por categorias de peso, que possui como principal característica os chutes, estes, que são definidos por fatores físicos e que correspondem a 98% dos gestos do combate. Por ser um esporte intermitente, solicita alta preparação física durante a competição, no qual uma luta tem duração aproximada de 8 min, e pelas mudanças ocorridas nos últimos anos, fez com que a antropometria dos atletas fosse um fator decisivo no resultado de uma luta. Pela falta de um protocolo qualificado, específico e válido para avaliar a composição corporal destes atletas, o presente estudo tem como objetivo verificar quais equações antropométricasapresenta maior correlação quando correlacionado com o método de pletismografia por deslocamento de ar para avaliação dopercentual de gordura de atletas masculinos de Taekwondo. Participaram da pesquisa 11 atletas de Taekwondo com idade entre 16 e 30 anos, que foram avaliados por meio de medidas antropométricas de dobras cutâneas, circunferências e perímetros e pelo método de referência pletismografiapor deslocamento de ar. Posteriormente analisou-se a correlação entre a pletismografia por deslocamento de ar e as equações antropométricas.Das nove equações utilizadas seis não apresentaram diferença significativa (p>0,05) com relação à pletismografiapor deslocamento de ar. Dentre estas, três equações apresentaram grande correlação e duas delas apresentaram correlação muito grande com r=914. Devido as características, Whiterset al. (1987) foi considerada a mais adequada para avaliar o %G de atletas masculinos de Taekwondo

    Helical Preorganization of Molecules Drives Solid-State Intermolecular Acyl-Transfer Reactivity in Crystals: Structures and Reactivity Studies of Solvates of Racemic 2,6-Di‑<i>O</i>‑(4-fluorobenzoyl)-<i>myo</i>-inositol 1,3,5-Orthoformate

    No full text
    Racemic 2,6-di-<i>O</i>-(4-fluorobenzoyl)-<i>myo</i>-inositol 1,3,5-orthoformate yielded structurally dissimilar solvent-free and solvated crystals depending upon the solvent of crystallization. The solvated crystals exhibited helical assembly of host molecules, due to the interaction of the guest molecules with the orthoformate moiety of the host. Some of the solvates showed specific but incomplete benzoyl group transfer reactivity below the phase transition temperature, whereas the reaction in solvent-free crystals led to a mixture of several products. These results reveal the necessity of helical molecular packing of the reacting molecules in their crystals to facilitate specific intermolecular acyl transfer reactivity. The crystal structures of the fluorobenzoate solvates were similar to those of the solvates of the analogous chloro and bromobenzoates. The latter could be thermally transformed into their solvent-free form via melt crystallization, resulting in the conversion of a helical molecular packing into a nonhelical molecular packing

    Reactions of CO<sub>2</sub> and CS<sub>2</sub> with [RuH(η<sup>2</sup>‑CH<sub>2</sub>PMe<sub>2</sub>)(PMe<sub>3</sub>)<sub>3</sub>]

    No full text
    Carbon disulfide reacted with the cyclometalated ruthenium complex [RuH­(η<sup>2</sup>-CH<sub>2</sub>PMe<sub>2</sub>)­(PMe<sub>3</sub>)<sub>3</sub>] (<b>1</b>) at low temperature to yield the dithioformate complex [Ru­(η<sup>1</sup>-SC­(S)­H)­(η<sup>2</sup>-CH<sub>2</sub>PMe<sub>2</sub>)­(PMe<sub>3</sub>)<sub>3</sub>] (<b>4</b>), where the CS<sub>2</sub> inserts into the metal hydride bond. On warming, complex <b>4</b> rearranges to give the known complex [Ru­(S<sub>2</sub>CHPMe<sub>2</sub>CH<sub>2</sub>-κ<sup>3</sup><i>S</i>,<i>S</i>,<i>C</i>)­(PMe<sub>3</sub>)<sub>3</sub>] (<b>3</b>), where the CS<sub>2</sub> is inserted in a metal phosphorus bond. Further reaction of this complex with excess CS<sub>2</sub> over a period of days resulted in insertion of a second CS<sub>2</sub> unit into one Ru–S bond to yield [Ru­(SC­(S)­SCH­(-S)­PMe<sub>2</sub>CH<sub>2</sub>-κ<sup>3</sup><i>S</i>,<i>S</i>,<i>C</i>)­(PMe<sub>3</sub>)<sub>3</sub>] (<b>5</b>). Complex <b>5</b> was characterized crystallographically and by multinuclear NMR spectroscopy. In contrast, reaction of [RuH­(η<sup>2</sup>-CH<sub>2</sub>PMe<sub>2</sub>)­(PMe<sub>3</sub>)<sub>3</sub>] (<b>1</b>) with CO<sub>2</sub> resulted in insertion of CO<sub>2</sub> into the Ru–C bond to give [RuH­(OC­(O)­CH<sub>2</sub>PMe<sub>2</sub>-κ<sup>2</sup><i>O</i>,<i>P</i>)­(PMe<sub>3</sub>)<sub>3</sub>] (<b>2</b>). Low-temperature NMR spectroscopic studies did not show any evidence for prior formation of a formate complex

    A Capped Dipeptide Which Simultaneously Exhibits Gelation and Crystallization Behavior

    No full text
    Short peptides capped at their N-terminus are often highly efficient gelators, yet notoriously difficult to crystallize. This is due to strong unidirectional interactions within fibers, resulting in structure propagation only along one direction. Here, we synthesize the N-capped dipeptide, benzimidazole-diphenylalanine, which forms both hydrogels and single crystals. Even more remarkably, we show using atomic force microscopy the coexistence of these two distinct phases. We then use powder X-ray diffraction to investigate whether the single crystal structure can be extrapolated to the molecular arrangement within the hydrogel. The results suggest parallel β-sheet arrangement as the dominant structural motif, challenging existing models for gelation of short peptides, and providing new directions for the future rational design of short peptide gelators

    A Capped Dipeptide Which Simultaneously Exhibits Gelation and Crystallization Behavior

    No full text
    Short peptides capped at their N-terminus are often highly efficient gelators, yet notoriously difficult to crystallize. This is due to strong unidirectional interactions within fibers, resulting in structure propagation only along one direction. Here, we synthesize the N-capped dipeptide, benzimidazole-diphenylalanine, which forms both hydrogels and single crystals. Even more remarkably, we show using atomic force microscopy the coexistence of these two distinct phases. We then use powder X-ray diffraction to investigate whether the single crystal structure can be extrapolated to the molecular arrangement within the hydrogel. The results suggest parallel β-sheet arrangement as the dominant structural motif, challenging existing models for gelation of short peptides, and providing new directions for the future rational design of short peptide gelators

    Rhodium Complexes of a Chelating Ligand with Imidazol-2-ylidene and Pyridin-2-ylidene Donors: The Effect of <i>C</i>-Metalation of Nicotinamide Groups on Uptake of Hydride Ion

    No full text
    Rhodium complexes of the imidazolylidene (<i>C</i>-im) <i>N</i>-heterocyclic carbene (NHC) ligand, <i>C</i>-im-pyH<sup>+</sup>, bearing a nicotinamide cation substituent (pyH<sup>+</sup>) have been targeted for ligand-centered uptake and delivery of hydride ion. This work reveals that rhodium­(I) complexes such as [Rh­(<i>C</i>-im-pyH<sup>+</sup>)­(COD)­X]­[PF<sub>6</sub>] (<b>1</b>, <b>a</b>: X = Cl, <b>b</b>: X = I) undergo facile <i>C</i>-metalation of the nicotinamide ring to afford rhodium complexes of a novel chelate ligand, <i>C,C′</i>-im-py, with coordinated imidazolylidene (C<sub>im</sub>) and pyridylidene (C<sub>py</sub>) NHC-donors. Seven examples were characterized and include rhodium­(III) monomers of the general formula [Rh­(<i>C,C′</i>-im-py)­L<sub><i>x</i></sub>I<sub>2</sub>]<sup><i>z</i>+</sup> (<b>2</b>: <i>z</i> = 1, L = H<sub>2</sub>O or solvent, <i>x</i> = 2; <b>3</b>, <b>5</b>, <b>7</b>: <i>z</i> = 0, L = carboxylate, <i>x</i> = 1) and novel rhodium­(II) dimers, the <i>anti/syn</i>-isomers of [Rh<sub>2</sub>(<i>C,C′</i>-im-py)<sub>2</sub>(μOAc)<sub>2</sub>I<sub>2</sub>] (<b>4-</b><i><b>anti</b></i>/<i><b>syn</b></i>). The NMR data, backed by DFT calculations, is consistent with attribution of the <i>C,C′</i>-im-py ligand as a bis­(carbene) donor. Single crystal X-ray diffraction studies are reported for <b>2</b>, <b>3</b>, <b>4-</b><i><b>anti</b></i>, <b>4-</b><i><b>syn</b></i> and <b>7</b>. Consistently, within the each complex, the Rh–C<sub>im</sub> bond length is shorter than the Rh–C<sub>py</sub> bond length, which is the opposite trend to that expected based on simple electronic considerations. It is proposed that intramolecular steric interactions imposed by different rings in the rigid <i>C,C′</i>-im-py chelate ligand dictate the observed Rh–C<sub>NHC</sub> bond lengths. Attempts to add hydride to the <i>C</i>-metalated nicotinamide ring in <b>3</b> were unsuccessful. The redox behavior of <b>3</b> and <b>4</b> and, for comparison, an analogous bis­(imidazolylidene)­rhodium­(III) monomer (<b>8</b>), were characterized by cyclic voltammetry, electron paramagnetic resonance (EPR), and UV–vis spectroelectrochemistry. In <b>3</b> and <b>4</b>, the <i>C</i>-metalated nicotinamide ring is found to exhibit a one-electron reduction process at far lower potential (−2.34 V vs. Fc<sup>+</sup>/Fc in acetonitrile) than the two-electron nicotinamide cation-dihydronicotinamide couple found for the corresponding nonmetalated ring (−1.24 V). The <i>C,C′</i>-ligand is electrochemically silent over a large potential range (from −2.3 V to the anodic solvent limit), thus for both <b>3</b> and <b>4</b> the first reduction processes are metal-centered. For <b>4-</b><i><b>anti</b></i>, the cyclic voltammetry and UV–vis spectrochemical results are consistent with a diamagnetic [Rh­(I)­Rh­(II)]<sub>2</sub> tetrameric reduction product. Density functional theory (DFT) calculations were used to further probe the uptake of hydride ion by the nicotinamide ring, both before and after <i>C</i>-metalation. It is found that <i>C</i>-metalation significantly decreases the ability of the nicotinamide ring to take up hydride ion, which is attributed to the “carbene-like” character of a <i>C</i>-metalated pyridylidene ring

    Reactions of CO<sub>2</sub> and CS<sub>2</sub> with [RuH(η<sup>2</sup>‑CH<sub>2</sub>PMe<sub>2</sub>)(PMe<sub>3</sub>)<sub>3</sub>]

    No full text
    Carbon disulfide reacted with the cyclometalated ruthenium complex [RuH­(η<sup>2</sup>-CH<sub>2</sub>PMe<sub>2</sub>)­(PMe<sub>3</sub>)<sub>3</sub>] (<b>1</b>) at low temperature to yield the dithioformate complex [Ru­(η<sup>1</sup>-SC­(S)­H)­(η<sup>2</sup>-CH<sub>2</sub>PMe<sub>2</sub>)­(PMe<sub>3</sub>)<sub>3</sub>] (<b>4</b>), where the CS<sub>2</sub> inserts into the metal hydride bond. On warming, complex <b>4</b> rearranges to give the known complex [Ru­(S<sub>2</sub>CHPMe<sub>2</sub>CH<sub>2</sub>-κ<sup>3</sup><i>S</i>,<i>S</i>,<i>C</i>)­(PMe<sub>3</sub>)<sub>3</sub>] (<b>3</b>), where the CS<sub>2</sub> is inserted in a metal phosphorus bond. Further reaction of this complex with excess CS<sub>2</sub> over a period of days resulted in insertion of a second CS<sub>2</sub> unit into one Ru–S bond to yield [Ru­(SC­(S)­SCH­(-S)­PMe<sub>2</sub>CH<sub>2</sub>-κ<sup>3</sup><i>S</i>,<i>S</i>,<i>C</i>)­(PMe<sub>3</sub>)<sub>3</sub>] (<b>5</b>). Complex <b>5</b> was characterized crystallographically and by multinuclear NMR spectroscopy. In contrast, reaction of [RuH­(η<sup>2</sup>-CH<sub>2</sub>PMe<sub>2</sub>)­(PMe<sub>3</sub>)<sub>3</sub>] (<b>1</b>) with CO<sub>2</sub> resulted in insertion of CO<sub>2</sub> into the Ru–C bond to give [RuH­(OC­(O)­CH<sub>2</sub>PMe<sub>2</sub>-κ<sup>2</sup><i>O</i>,<i>P</i>)­(PMe<sub>3</sub>)<sub>3</sub>] (<b>2</b>). Low-temperature NMR spectroscopic studies did not show any evidence for prior formation of a formate complex

    Low Oxidation State Iron(0), Iron(I), and Ruthenium(0) Dinitrogen Complexes with a Very Bulky Neutral Phosphine Ligand

    No full text
    The synthesis of a series of iron and ruthenium complexes with the ligand P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>, P­(CH<sub>2</sub>CH<sub>2</sub>PCy<sub>2</sub>)<sub>3</sub> is described. The iron(0) and ruthenium(0) complexes Fe­(N<sub>2</sub>)­(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>) (<b>1</b>) and Ru­(N<sub>2</sub>)­(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>) (<b>2</b>) were synthesized by treatment of [FeCl­(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>)]<sup>+</sup> and [RuCl­(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>)]<sup>+</sup> with an excess of potassium graphite under a nitrogen atmosphere. The Fe­(I) and Ru­(I) species [Fe­(N<sub>2</sub>)­(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>)]<sup>+</sup> (<b>3</b>) and RuCl­(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>) (<b>4</b>) were synthesized by treatment of [FeCl­(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>)]<sup>+</sup> and [RuCl­(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>)]<sup>+</sup> with 1 equiv of potassium graphite under a nitrogen atmosphere. The cationic dinitrogen species [Fe­(N<sub>2</sub>)­H­(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>)]<sup>+</sup> (<b>6</b>) and [Ru­(N<sub>2</sub>)­H­(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>)]<sup>+</sup> (<b>7</b>) were formed by treatment of <b>1</b> and <b>3</b>, respectively, with 1 equiv of a weak organic acid. The iron­(II) complex Fe­(H)<sub>2</sub>(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>) (<b>5</b>) was also synthesized and characterized. Complexes [RuCl­(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>)]­[BPh<sub>4</sub>], <b>1</b>, <b>2</b>, <b>3­[BPh</b><sub><b>4</b></sub><b>]</b>, <b>4</b>, <b>5</b>, <b>6­[BF</b><sub><b>4</b></sub><b>]</b>, and <b>7­[BF</b><sub><b>4</b></sub><b>]</b> were characterized by X-ray crystallography. The Fe­(I) and Ru­(I) complexes <b>3</b> and <b>4</b> were characterized by electron paramagnetic resonance (EPR) spectroscopy, and the Fe­(I) complex has an EPR spectrum typical of a metal-centered radical

    Low Oxidation State Iron(0), Iron(I), and Ruthenium(0) Dinitrogen Complexes with a Very Bulky Neutral Phosphine Ligand

    No full text
    The synthesis of a series of iron and ruthenium complexes with the ligand P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>, P­(CH<sub>2</sub>CH<sub>2</sub>PCy<sub>2</sub>)<sub>3</sub> is described. The iron(0) and ruthenium(0) complexes Fe­(N<sub>2</sub>)­(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>) (<b>1</b>) and Ru­(N<sub>2</sub>)­(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>) (<b>2</b>) were synthesized by treatment of [FeCl­(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>)]<sup>+</sup> and [RuCl­(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>)]<sup>+</sup> with an excess of potassium graphite under a nitrogen atmosphere. The Fe­(I) and Ru­(I) species [Fe­(N<sub>2</sub>)­(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>)]<sup>+</sup> (<b>3</b>) and RuCl­(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>) (<b>4</b>) were synthesized by treatment of [FeCl­(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>)]<sup>+</sup> and [RuCl­(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>)]<sup>+</sup> with 1 equiv of potassium graphite under a nitrogen atmosphere. The cationic dinitrogen species [Fe­(N<sub>2</sub>)­H­(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>)]<sup>+</sup> (<b>6</b>) and [Ru­(N<sub>2</sub>)­H­(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>)]<sup>+</sup> (<b>7</b>) were formed by treatment of <b>1</b> and <b>3</b>, respectively, with 1 equiv of a weak organic acid. The iron­(II) complex Fe­(H)<sub>2</sub>(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>) (<b>5</b>) was also synthesized and characterized. Complexes [RuCl­(P<sup>2</sup>P<sub>3</sub><sup>Cy</sup>)]­[BPh<sub>4</sub>], <b>1</b>, <b>2</b>, <b>3­[BPh</b><sub><b>4</b></sub><b>]</b>, <b>4</b>, <b>5</b>, <b>6­[BF</b><sub><b>4</b></sub><b>]</b>, and <b>7­[BF</b><sub><b>4</b></sub><b>]</b> were characterized by X-ray crystallography. The Fe­(I) and Ru­(I) complexes <b>3</b> and <b>4</b> were characterized by electron paramagnetic resonance (EPR) spectroscopy, and the Fe­(I) complex has an EPR spectrum typical of a metal-centered radical
    corecore