3,464 research outputs found

    Date palm (Phoenix dactyliferous L.) Genetic Diversity and Conservation under Climate

    Get PDF
    A seasonal scientific magazinespecialized in date palms Published by Khalifa International Award For DatePalm And Agricultural InnovationPeer reviewe

    Mutant Resources and Mutagenomics in crop plants

    Get PDF
    Agricultural sustainability and food security are major challenges facing continued population growth. Integration of existing and new technologies for the induction and exploitation of genetic diversity towards developing healthier, nutritious and productive crops is the need of the hour. Mutagenesis is a proven technology for the development of improved or novel varieties with desirable traits. Several mutant genes have been successfully explored, either directly or indirectly, to complement crop productivity. The advent of genomics approaches and plant genome sequencing has benefitted mutation discovery and mutant characterization. Plant mutant repositories are being established to serve as platforms for basic and applied research in crop improvement. This review briefly outlines the impact and molecular/genomic characterization of induced mutations in crop improvement.Peer reviewe

    Fruit Crop Improvement with Genome Editing, In Vitro and Transgenic Approaches

    Get PDF
    Fruit species contribute to nutritional and health security by providing micronutrients, antioxidants, and bioactive phytoconstituents, and hence fruit-based products are becoming functional foods presently and for the future. Although conventional breeding methods have yielded improved varieties having fruit quality, aroma, antioxidants, yield, and nutritional traits, the threat of climate change and need for improvement in several other traits such as biotic and abiotic stress tolerance and higher nutritional quality has demanded complementary novel strategies. Biotechnological research in fruit crops has offered immense scope for large-scale multiplication of elite clones, in vitro, mutagenesis, and genetic transformation. Advanced molecular methods, such as genome-wide association studies (GWAS), QTLomics, genomic selection for the development of novel germplasm having functional traits for agronomic and nutritional quality, and enrichment of bioactive constituents through metabolic pathway engineering and development of novel products, are now paving the way for trait-based improvement for developing genetically superior varieties in fruit plant species for enhanced nutritional quality and agronomic performance. In this article, we highlight the applications of in vitro and molecular breeding approaches for use in fruit breeding

    Fruit Crop Improvement with Genome Editing, In Vitro and Transgenic Approaches

    Get PDF
    Fruit species contribute to nutritional and health security by providing micronutrients, antioxidants, and bioactive phytoconstituents, and hence fruit-based products are becoming functional foods presently and for the future. Although conventional breeding methods have yielded improved varieties having fruit quality, aroma, antioxidants, yield, and nutritional traits, the threat of climate change and need for improvement in several other traits such as biotic and abiotic stress tolerance and higher nutritional quality has demanded complementary novel strategies. Biotechnological research in fruit crops has offered immense scope for large-scale multiplication of elite clones, in vitro, mutagenesis, and genetic transformation. Advanced molecular methods, such as genome-wide association studies (GWAS), QTLomics, genomic selection for the development of novel germplasm having functional traits for agronomic and nutritional quality, and enrichment of bioactive constituents through metabolic pathway engineering and development of novel products, are now paving the way for trait-based improvement for developing genetically superior varieties in fruit plant species for enhanced nutritional quality and agronomic performance. In this article, we highlight the applications of in vitro and molecular breeding approaches for use in fruit breeding

    Cellular, Molecular, and Physiological Aspects of In Vitro Plant Regeneration

    Get PDF
    Plants generally have the highest regenerative ability because they show a high degree of developmental plasticity. Although the basic principles of plant regeneration date back many years, understanding the cellular, molecular, and physiological mechanisms based on these principles is currently in progress. In addition to the significant effects of some factors such as medium components, phytohormones, explant type, and light on the regeneration ability of an explant, recent reports evidence the involvement of molecular signals in organogenesis and embryogenesis responses to explant wounding, induced plant cell death, and phytohormones interaction. However, some cellular behaviors such as the occurrence of somaclonal variations and abnormalities during the in vitro plant regeneration process may be associated with adverse effects on the efficacy of plant regeneration. A review of past studies suggests that, in some cases, regeneration in plants involves the reprogramming of distinct somatic cells, while in others, it is induced by the activation of relatively undifferentiated cells in somatic tissues. However, this review covers the most important factors involved in the process of plant regeneration and discusses the mechanisms by which plants monitor this process.Peer reviewe

    A cognitive perspective on pair programming

    Get PDF
    • …
    corecore