
Association for Information Systems
AIS Electronic Library (AISeL)

AMCIS 2006 Proceedings Americas Conference on Information Systems
(AMCIS)

December 2006

A cognitive perspective on pair programming
Radhika Jain
The University of Memphis

Jaime Muro
Zicklin School of Business

Kannan Mohan
Zicklin School of Business

Follow this and additional works at: http://aisel.aisnet.org/amcis2006

This material is brought to you by the Americas Conference on Information Systems (AMCIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in AMCIS 2006 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Jain, Radhika; Muro, Jaime; and Mohan, Kannan, "A cognitive perspective on pair programming" (2006). AMCIS 2006 Proceedings.
444.
http://aisel.aisnet.org/amcis2006/444

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301339986?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Famcis2006%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2006?utm_source=aisel.aisnet.org%2Famcis2006%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2006%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis?utm_source=aisel.aisnet.org%2Famcis2006%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2006?utm_source=aisel.aisnet.org%2Famcis2006%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/amcis2006/444?utm_source=aisel.aisnet.org%2Famcis2006%2F444&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Jain et al. Pair programming and cognitive biases

Proceedings of the Twelfth Americas Conference on Information Systems, Acapulco, Mexico August 04th-06th 2006

A cognitive perspective on pair programming

Radhika Jain
Department of Management Information Systems

Fogelman College of Business and Economics
The University of Memphis

Memphis, TN 38152
Email: r.jain@memphis.edu

Jaime Muro Flomenbaum
Department of Computer Information Systems

Zicklin School of Business
Baruch College

New York City, NY 10010
Email: jaime_muroflomenbaum@baruch.cuny.edu

Kannan Mohan
Department of Computer Information Systems

Zicklin School of Business
Baruch College

New York City, NY 10010
Email: kannan_mohan@baruch.cuny.edu

ABSTRACT

Pair programming has gained widespread popularity with the advent of agile methodologies like Extreme Programming.
Studies examining productivity improvement resulting from pair programming have produced mixed results. One of the
important factors contributing to successful pair programming is pair composition. Developers’ styles need to be
complimentary to each other, in order for each developer to derive benefits from other’s strengths. In this research, we focus
on empirically investigating the impact of pairing experts and novices in different ways on their productivity.

Keywords

Pair programming, pair composition, cognitive biases, expert-novice characteristics, systems design performance, developer
productivity

INTRODUCTION
Pair programming (PP) is a practice in which two developers work collaboratively on one computer on the same design,
algorithm, code, or test. The pair is made up of a driver, who actively works with the computer and a navigator, who
attentively watches the work of the driver, identifies problems, and makes suggestions (Williams and Kessler 2000). The two
developers switch roles frequently. Proponents of PP claim that it brings significant benefits in terms of higher team
productivity, improved quality, reduced time-to-market, lower costs, improved knowledge building and tacit knowledge
transfer, and strengthened trust and morale (Canfora, Cimitile, and Visaggio 2003). PP allows developers to share their ideas
immediately and to conduct ongoing review of the program code to reduce the defect density of the code (Padberg and
Muller 2003). Differences in the performance of these approaches is attributed to the quality of developers’ mental models of
the task to be performed (Lim, Ward, and Benbasat 1997). Lim et al (1997) argue that subjects working together are likely to
have better understanding of three aspects of development viz. the surface structure of a program, its deep structure, and
execution of a program by machine (Lui and Chan 2004), and thus form higher quality mental models.

Despite the expected advantages of PP, results of past empirical studies on PP, report contradictory findings in terms of
improvement in software quality and effort spent (For examples see (Hulkko and Abrahamsson 2005; Nawrocki and
Wojciechowski 2001; Nosek 1998)). We argue that one of the important factors contributing to such contradictory findings of
pair programming is pair composition. Pair composition focuses on the “characteristics (or development styles) of two
developers paired together to work on a development task”. Developers’ styles need to be complimentary to each other, in

 3698

mailto:r.jain@memphis.edu
mailto:jaime_muroflomenbaum@baruch.cuny.edu
mailto:kannan_mohan@baruch.cuny.edu

Jain et al. Pair programming and cognitive biases

Proceedings of the Twelfth Americas Conference on Information Systems, Acapulco, Mexico August 04th-06th 2006

order for the pair to derive benefits by leveraging their knowledge and increase productivity. When working together on a
problem solving task, these developers may exhibit different levels of cognitive biases as a result of their expertise and this in
turn may affect the performance of the pair. Past research on PP has primarily focused on costs and benefits, largely ignoring
how cognitive characteristics of paired developers affect the outcome. It has been recognized in the past literature that
software developers are affected by cognitive biases when they perform various tasks. However, little attention has been
focused on examining the differences in cognitive biases exhibited by experts and novices, and especially their collective
cognition when paired together. Motivated by the dearth of research in this area, our research objective is to examine the
relationship between pair composition, cognitive biases, and productivity.

In next section, we review common cognitive biases that impact software developers. We then review the literature on
cognitive differences between experts and novices. We then present the details of research methodology used, preliminary
findings, followed by conclusion.

COGNITIVE BIASES
Cognitive biases are mental behaviors that have influence on people’s problem solving approaches (Arnott 2006). People
employ cognitive biases to reduce uncertainty and complexity when processing information during problem solving (Tversky
and Kahneman 1974). These biases are often employed to simplify complex inference tasks to more manageable proportions
(Parsons and Saunders 2004). While there have been numerous studies done on the effects of cognitive biases, there is no one
universal strategy that is prescribed to mitigate their effects. Suggested strategies in the literature are often problem-specific.
While the effects of these biases have been well studied in general problem solving, their impact on pair composition in
software development has gained limited attention. The most common cognitive biases experienced during problem solving
include anchoring and adjustment, and confidence biases.

Anchoring and adjustment bias
Anchoring and adjustment bias results from people forming initial estimates about a problem and adjusting their initial
estimates to arrive at more appropriate final solutions (Parsons and Saunders 2004; Stacy and MacMillan 1995). This initial
estimate, known as an anchor, is ‘a familiar/known position or a reference point’ (Kahneman and Tversky 1973). Different
starting points may yield different estimates that are biased towards these initial starting points. Anchoring and adjustment
have been known to impact several tasks like artifact reuse and decision making (Parsons and Saunders 2004). Anchors are
typically inaccurate and developers may not be aware of these inaccuracies and thereby not realize the need for adjustment or
adjust insufficiently. Insufficient adjustments are made when there is an uncertainty about the correct solution. This may lead
to premature termination of the task due to reluctance to spend more effort in adjusting sufficiently.

For example when working together in a pair, requests for clarification from the navigator may often bring out alternate
strategies, shortcomings, or flaws in the approach or solution. In this process of clarification, the driver revises his/her own
assumptions and adjusts the solution. Without such brain-storming, the driver may unwittingly settle for less than optimal
solutions. This exercise of providing clarifications may solidify and deepen driver’s own understanding and improve mental
representation of the problem for both the developers, leading to improved inference potential (Lim et al. 1997). Lim et al
(1997) define interference potential as “potential [of mental model] for generating proper inferences about and predictions of
a system’s behavior”.

Confidence biases
Confidence biases such as confirmation and availability bias as the name indicates “act to increase individual’s confidence in
his or her prowess as a decision-maker (Arnott 2006)”. As a result, individuals may discontinue their search for new
evidences to help accomplish problem-solving task and may make less informed decisions. For example, confirmation bias
suggests that people tend to focus on information that is consistent with their preconceived notions while they disregard
information that is inconsistent with their past conceptualizations (Fisher and Statman 2000). However when working
together, people are likely to observe actions or feedback of the other person, and incorporate it in their decision-making
process.

For example when working together in a pair, brainstorming can bring up better alternate strategies or complement the
existing knowledge-base of the pair. Creation of such co-owned understanding can help reduce the impact of such confidence
biases. This reduces the emphasis that developers may otherwise place on their potentially incomplete pre-conceived notions
or past conceptualizations.

 3699

Jain et al. Pair programming and cognitive biases

Proceedings of the Twelfth Americas Conference on Information Systems, Acapulco, Mexico August 04th-06th 2006

In the next section, we review the literature on expert-novice comparison to gain insights into how experts and novices
approach problem-solving tasks.

EXPERT NOVICE RESEARCH SUMMARY
Various dimensions on which experts and novices differ are summarized in Table 1. This summary on the cognitive abilities
of the expert and novices suggests that major differences lie in

1. The nature of knowledge and its generalizability,
2. How knowledge is acquired, organized, retrieved, and applied,
3. Characteristics of their problem solving strategies,
4. The nature of post completion activities performed, and
5. Use of comprehension aids.

When working together developers may be de-biased as a result of the interactions and brainstorming that take place. Such
de-biasing may work in their favor improving their solutions. We argue that the extent to which de-biasing occurs and its
effectiveness depends on the nature of pair composition. Given important differences between experts and novices, it is likely
that experts and novices will be affected differently by cognitive biases and this in turn will affect collective cognition in
development activities. For example, it is possible that when expert and novice are paired together, clarifications requested by
the novices can bring up many hidden assumptions made by the expert. This interaction as a whole will then improve
collective cognition of this pair, improving their mental model representations and thus their performance.

There has been little attention on pair composition based on cognitive characteristics of developers. Lui and Chan (2004)
propose a staged cognitive programming model (definition, representation, model, schema, algorithm, and code) to explain
when and why a pair may outperform two individuals when working on a problem. With an empirical evaluation of their
model, they conclude that pair programming strategy is more effective when pairs work together on un-familiar problems and
least effective when they work on familiar problems. Muller and Padberg (2004) suggest that the level of comfort that
developers feel with pair programming has impact on pair productivity and not so much upon how pairs are composed. Cao
and Xu (2005)’s examination of activity patterns in PP indicates that different pair composition yields differences in activity
patterns of a given pair. For example, they found that when two highly competent student subjects were paired together, their
interactions were richer and involved deep-thinking activities. These contradictory findings require further examination.

Based on the above discussion, our research objective leads to the following questions:

1. How does pair composition affect cognitive biases exhibited by a pair?
2. How does the collective cognition of a pair impact their pair performance?

RESEARCH METHODOLOGY
We conduct verbal protocol analyses to gain insights into how cognitive biases may be impacted by different pair
compositions. This methodology is commonly used in research on process tracing, knowledge acquisition, model
formulation, and decision making behavior (Todd and Benbasat 1987). Here, we examine the cognitive processes followed
by subjects as they work alone and in pairs. We focus on identifying the common cognitive biases that impact the developers’
performance.

 3700

Jain et al. Pair programming and cognitive biases

Proceedings of the Twelfth Americas Conference on Information Systems, Acapulco, Mexico August 04th-06th 2006 3701

Jain et al. Pair programming and cognitive biases

Proceedings of the Twelfth Americas Conference on Information Systems, Acapulco, Mexico August 04th-06th 2006

Table 1: Major Categories of Differences in Experts and Novices

 3702

Jain et al. Pair programming and cognitive biases

Proceedings of the Twelfth Americas Conference on Information Systems, Acapulco, Mexico August 04th-06th 2006

Experimental design
The experimental design is as shown in Table 2, with five groups. Subjects in each group are provided with design
documents and UML models of a library management system. Subjects are asked to perform four tasks that involve
incorporating changes to the existing design to address new requirements. It should be noted that when paired together,
developers typically switch their navigator and driver roles frequently.

Table 2: Experimental design

Novices (G1)No pairing

Experts (G2)

Two novices paired together (G3)

Two experts paired together (G4)

Paired

One expert and one novice paired together (G5)

Verbal Protocol Analysis
Ten developers participated in our study. Five of these subjects were experts (G2) (average experience in systems design was
more than five years). The remaining five were considered as novices (G1) (average experience of about one year). Subjects
were asked to perform four maintenance tasks (two of these were training tasks) at two different levels of complexity.
Subjects were asked to verbalize their thoughts as they performed the tasks. Time taken by subjects to complete the tasks
ranged from about one to two hours. The first two tasks were simple training tasks to get subjects used to verbalizing their
thoughts aloud. Their verbal protocols were recorded, transcribed, and analyzed. Analysis of the verbal protocols is guided by
the research model shown in Figure 1. Data collection is currently ongoing for the three remaining groups G3, G4, and G5.

Figure 1: Research Model

Initial findings reveal that software developers are indeed affected by cognitive biases. Key preliminary findings are
summarized below:

1. Experts exhibit confidence biases as they were reluctant to examine documentation. Novices were less
susceptible to this bias.

2. Experts were more willing to explore wide range of solutions rather than anchoring to just one solution.
Novices, due to their inability to identify such wider range of solutions, tended to anchor to their initial solution.

3. Also, propensity of experts to self-evaluate led them to make recurring adjustments to their solutions, unlike the
novices who rarely evaluated quality of their solutions, resulting in little or no adjustments to their solutions.

CONCLUSION
This research emphasizes the importance of the relationship between pair composition and cognitive biases exhibited by
software developers and how this affects performance. Investigation of this phenomenon on a wider scale by collecting
quantitative data to measure the variables shown in the research model (Figure 1) is a subject of ongoing research.

 3703

Jain et al. Pair programming and cognitive biases

Proceedings of the Twelfth Americas Conference on Information Systems, Acapulco, Mexico August 04th-06th 2006

REFERENCES
1. Arnott, D. (2006) Cognitive biases and decision support systems development: a design science approach, Information

Systems Journal, 16, 1, 55-78.

2. Canfora, G., Cimitile, A. and Visaggio, C.A. (2003) Lessons learned about distributed pair programming: what are the
knowledge needs to address?, Proceedings of Twelfth IEEE WETICE’03,

3. Cao, L. and Xu, P. (2005) Activity Patterns of Pair Programming, Proceedings of 38th Annual Hawaii International
Conference on System Sciences (HICSS'05) - Track 3, Big Island, HI, 88a.

4. Fisher, K. and Statman, M. (2000) Cognitive Biases in Market Forecasts: The frailty of forecasting., The Journal of
Portfolio Management, 1-10.

5. Hulkko, H. and Abrahamsson, P. (2005) A Multiple Case Study on the Impact of Pair Programming on Product Quality,
Proceedings of 27th ICSE'05, St. Louis, Missouri, USA,

6. Kahneman, D. and Tversky, A. (1973) On the psychology of prediction, Psychology Review, 80, 237-251.

7. Lim, K., Ward, L. and Benbasat, I. (1997) An Empirical Study of Computer System Learning: Comparison of Co-
Discovery and Self-Discovery Methods., Information Systems Research, 8, 3, 254-272.

8. Lui, K. and Chan, K. (2004) A cognitive model for solo programming and pair programming, Proceedings of Third
IEEE ICCI’04, 94-102.

9. Muller, M. and Padberg, F. (2004) An Empirical Study about the Feelgood Factor in Pair Programming, Proceedings of
Tenth METRICS’04,

10. Nawrocki, J. and Wojciechowski, A. (2001) Experimental Evaluation of Pair Programming, Proceedings of 12th
European Software Control and Metrics Conference, 269–276.

11. Nosek, J. (1998) The Cast for Collaborative Programming, Communications of the ACM, 41, 3, 105–108.

12. Padberg, F. and Muller, M. (2003) Analyzing the cost and benefit of pair programming, Proceedings of Ninth
International Software Metrics Symposium (METRICS 2003), Sydney, Australia, 166 - 177.

13. Parsons, J. and Saunders, C. (2004) Cognitive Heuristics in Software Engineering: Applying and Extending Anchoring
and Adjustment to Artifact Reuse, IEEE Transactions On Software Engineering,, 30, 12, 873-888.

14. Stacy, W. and MacMillan, J. (1995) Cognitive bias in software engineering, Communications of the ACM, 38, 6, 57 - 63.

15. Todd, P. and Benbasat, I. (1987) Process Tracing Methods in Decision-Support Systems, MIS Quarterly, 11, 4, 493-512.

16. Tversky, A. and Kahneman, D. (1974) Judgment under Uncertainty: Heuristics and Biases, Science, 185, 4157, 1124-
1131.

17. Williams, L. and Kessler, R. (2000) All I Really Need to Know About Pair Programming I Learned in Kindergarten,
Communications of the ACM, 43, 5, 108-114.

 3704

	Association for Information Systems
	AIS Electronic Library (AISeL)
	December 2006

	A cognitive perspective on pair programming
	Radhika Jain
	Jaime Muro
	Kannan Mohan
	Recommended Citation

	tmp.1219202418.pdf.LedUb

