10 research outputs found
Mixed Linearity Improvement Techniques for Ultra-wideband Low Noise Amplifier
We present the linearization of an ultra-wideband low noise amplifier (UWB-LNA) operating from 2GHz to 11GHz through combining two linearization methods. The used linearization techniques are the combination of post-distortion cancellation and derivative-superposition linearization methods. The linearized UWB-LNA shows an improved linearity (IIP3) of +12dBm, a minimum noise figure (NFmin.) of 3.6dB, input and output insertion losses (S11 and S22) Â below -9dB over the entire working bandwidth, midband gain of 6dB at 5.8GHz, and overall circuit power consumption of 24mW supplied from a 1.5V voltage source. Both UWB-LNA and linearized UWB-LNA designs are verified and simulated with ADS2016.01 software using BSIM3v3 TSMC 180nm CMOS model files. In addition, the linearized UWB-LNA performance is compared with other recent state-of-the-art LNAs
SLANTLET TRANSFORM-BASED OFDM SCHEME
Wireless digital communication is rapidly expanding resulting in a demand for systems that
are reliable and have a high spectral efficiency. To fulfill these demands OFDM technology has drawn a lot of attention. In this paper a new technique is proposed to improve the performance of OFDM. The new technique is use the slantlet transform (SLT) instead Fast Fourier transform (FFT) in order to reduce the level of interference. This also will remove the need for Guard interval (GI) in the case of the FFT-OFDM and therefore improve the bandwidth efficiency of the OFDM. The SLT-OFDM is also better than wavelet packet (WP)-OFDM in the selective channel because the slantlet filter bank is less frequency selective than the traditional DWT filter bank, due to the shorter length of the filters and SLT algorithm is faster than WP algorithm. The main results obtained indicate that the performance of SLT-OFDM is better on average by 18dB in comparison with that of FFT-OFDM flat fading channels. For frequency selective fading channel the SLT-OFDM performs is better than the FFT-OFDM on the lower SNR region, while the situation will reverse with increase SNR values
Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study
Summary
Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally.
Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies
have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of
the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income
countries globally, and identified factors associated with mortality.
Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to
hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis,
exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a
minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical
status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary
intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause,
in-hospital mortality for all conditions combined and each condition individually, stratified by country income status.
We did a complete case analysis.
Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital
diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal
malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome
countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male.
Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3).
Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income
countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups).
Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome
countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries;
p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients
combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11],
p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20
[1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention
(ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety
checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed
(ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of
parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65
[0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality.
Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome,
middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will
be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger
than 5 years by 2030
Angle and polarization independent narrow-band thermal emitter made of metallic disk on SiO2
[[sponsorship]]應用科å¸ç ”究ä¸å¿ƒ[[note]]已出版;[SCI];有審查制度;具代表性[[note]]http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Drexel&SrcApp=hagerty_opac&KeyRecord=0003-6951&DestApp=JCR&RQ=IF_CAT_BOXPLO
Plasmon-polariton band structures of asymmetric T-shaped plasmonic gratings
[[sponsorship]]應用科å¸ç ”究ä¸å¿ƒ[[note]]已出版;[SCI];有審查制度;具代表性[[note]]http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Drexel&SrcApp=hagerty_opac&KeyRecord=1094-4087&DestApp=JCR&RQ=IF_CAT_BOXPLO
Design an All-Optical Combinational Logic Circuits Based on Nano-Ring Insulator-Metal-Insulator Plasmonic Waveguides
In this paper, we propose, analyze and simulate a new configuration to simulate all-optical combinational logic functions based on Nano-rings insulator-metal-insulator (IMI) plasmonic waveguides. We used Finite Element Method (FEM) to analyze the proposed plasmonic combinational logic functions. The analyzed combinational logic functions are Half-Adder, Full-Adder, Half-Subtractor, and Comparator One-Bit. The operation principle of these combinational logic functions is based on the constructive and destructive interferences between the input signal(s) and control signal. Numerical simulations show that a transmission threshold exists (0.25) which allows all proposed four plasmonic combinational logic functions to be achieved in one structure. As a result, the transmission threshold value measures the performance of the proposed plasmonic combinational logic functions. We use the same structure with the same dimensions at 1550 nm wavelength for all proposed plasmonic combinational logic functions. The proposed all-optical combinational logic functions structure contributes significantly to photonic integrated circuits construction and all-optical signal processing nano-circuits
An overview of nanoparticles in drug delivery: Properties and applications
Today, in diverse medical and clinical fields, including cancer treatment, nanoscience has evolved and evolved. Cancer and its forms, on the other hand, have been rumored and inclusive, and many individuals suffer from this fatal and lethal condition. Actually, even with the medicinal effect, current therapeutic approaches, including chemotherapy, radiotherapy, etc., create symptoms that are inconvenient for patients. Scientists and scholars are also working to establish and, strengthen the options and methods of therapy to deal with this dangerous illness. Nanoscience and nanotechnology have been popular today, their different areas, including nanoparticles, are commonly used for a number of applications, especially for drug delivery and diagnostic products, and cases of imaging. Release mechanisms focused on nanotechnology have a profound effect on the release of cancer drugs. Biomaterials and bio-engineering developments are leading to novel approaches to nanoparticles that could offer a new way for cancer patients to improve. In the drug release method, Nano-technology has had a great effect on the selection of cancer cells, the release of a targeted drug, and the overcoming of traditional chemotherapy limitations. This article discusses the drug delivery to tumor tissue, a method that is more effective than traditional drug delivery methods, also many new nanoparticles have solved the problem of cell resistance to the drug, provided a new field in the treatment of cancer