19 research outputs found

    Dendritic Glycerol-Cholesterol Amphiphiles as Drug Delivery Systems: A Comparison between Monomeric and Polymeric Structures

    Get PDF
    The application of micelles as drug delivery systems has gained a great deal of attention as a means to overcome the current several drawbacks present in conventional cancer treatments. In this work, we highlight the comparison of polymeric and monomeric amphiphilic systems with a similar hydrophilic–lipophilic balance (HLB) in terms of their biocompatibility, aggregation behavior in aqueous solution, and potential in solubilizing hydrophobic compounds. The polymeric system consists of non-ionic polymeric amphiphiles synthesized via sequential RAFT polymerization of polyglycerol first-generation [G1] dendron methacrylate and cholesterol methacrylate to obtain poly(G1-polyglycerol dendron methacrylate)-block-poly(cholesterol methacrylate) (pG1MA-b-pCMA). The monomeric system is a polyglycerol second-generation [G2] dendron end-capped to a cholesterol unit. Both amphiphiles form spherical micellar aggregations in aqueous solution, with differences in size and the morphology in which hydrophobic molecules can be encapsulated. The polymeric and monomeric micelles showed a low critical micelle concentration (CMC) of 0.2 and 17 ÎŒg/mL, respectively. The results of our cytotoxicity assays showed that the polymeric system has significantly higher cell viability compared to that of the monomeric amphiphiles. The polymeric micelles were implemented as drug delivery systems by encapsulation of the hydrophobic small molecule doxorubicin, achieving a loading capacity of 4%. In summary, the results of this study reveal that using cholesterol as a building block for polymer synthesis is a promising method of preparation for efficient drug delivery systems while improving the cell viability of monomeric cholesterol

    Gram Scale Synthesis of Dual-Responsive Dendritic Polyglycerol Sulfate as Drug Delivery System

    Get PDF
    Biocompatible polymers with the ability to load and release a cargo at the site of action in a smart response to stimuli have attracted great attention in the field of drug delivery and cancer therapy. In this work, we synthesize a dual-responsive dendritic polyglycerol sulfate (DR-dPGS) drug delivery system by copolymerization of glycidol, Δ-caprolactone and an epoxide monomer bearing a disulfide bond (SSG), followed by sulfation of terminal hydroxyl groups of the copolymer. The effect of different catalysts, including Lewis acids and organic bases, on the molecular weight, monomer content and polymer structure was investigated. The degradation of the polymer backbone was proven in presence of reducing agents and candida antarctica Lipase B (CALB) enzyme, which results in the cleavage of the disulfides and ester bonds, respectively. The hydrophobic anticancer drug Doxorubicin (DOX) was loaded in the polymer and the kinetic assessment showed an enhanced drug release with glutathione (GSH) or CALB as compared to controls and a synergistic effect of a combination of both stimuli. Cell uptake was studied by using confocal laser scanning microscopy with HeLa cells and showed the uptake of the Dox-loaded carriers and the release of the drug into the nucleus. Cytotoxicity tests with three different cancer cell lines showed good tolerability of the polymers of as high concentrations as 1 mg mL−1, while cancer cell growth was efficiently inhibited by DR-dPGS@Dox

    Chemical Approaches to Synthetic Drug Delivery Systems for Systemic Applications

    Get PDF
    Poor water solubility and low bioavailability of active pharmaceutical ingredients (APIs) are major causes of friction in the pharmaceutical industry and represent a formidable hurdle for pharmaceutical drug development. Drug delivery remains the major challenge for the application of new small-molecule drugs as well as biopharmaceuticals. The three challenges for synthetic delivery systems are: (i) controlling drug distribution and clearance in the blood; (ii) solubilizing poorly water-soluble agents, and (iii) selectively targeting specific tissues. Although several polymer-based systems have addressed the first two demands and have been translated into clinical practice, no targeted synthetic drug delivery system has reached the market. This Review is designed to provide a background on the challenges and requirements for the design and translation of new polymer-based delivery systems. This report will focus on chemical approaches to drug delivery for systemic applications

    Graphene-Assisted Synthesis of 2D Polyglycerols as Innovative Platforms for Multivalent Virus Interactions

    Get PDF
    2D nanomaterials have garnered widespread attention in biomedicine and bioengineering due to their unique physicochemical properties. However, poor functionality, low solubility, intrinsic toxicity, and nonspecific interactions at biointerfaces have hampered their application in vivo. Here, biocompatible polyglycerol units are crosslinked in two dimensions using a graphene-assisted strategy leading to highly functional and water-soluble polyglycerols nanosheets with 263 +/- 53 nm and 2.7 +/- 0.2 nm average lateral size and thickness, respectively. A single-layer hyperbranched polyglycerol containing azide functional groups is covalently conjugated to the surface of a functional graphene template through pH-sensitive linkers. Then, lateral crosslinking of polyglycerol units is carried out by loading tripropargylamine on the surface of graphene followed by lifting off this reagent for an on-face click reaction. Subsequently, the polyglycerol nanosheets are detached from the surface of graphene by slight acidification and centrifugation and is sulfated to mimic heparin sulfate proteoglycans. To highlight the impact of the two-dimensionality of the synthesized polyglycerol sulfate nanosheets at nanobiointerfaces, their efficiency with respect to herpes simplex virus type 1 and severe acute respiratory syndrome corona virus 2 inhibition is compared to their 3D nanogel analogs. Four times stronger in virus inhibition suggests that 2D polyglycerols are superior to their current 3D counterparts

    Chemische AnsĂ€tze fĂŒr synthetische Wirkstofftransportsysteme fĂŒr systemische Anwendungen

    Get PDF
    Schlechte Wasserlöslichkeit und geringe BioverfĂŒgbarkeit von pharmazeutischen Wirkstoffen (APIs) sind die Hauptursache fĂŒr Verzögerungen in der pharmazeutischen Industrie und stellen eine große HĂŒrde fĂŒr die Entwicklung neuer Arzneimittel dar. Der Transport von Arzneimitteln ist nach wie vor die grĂ¶ĂŸte Herausforderung fĂŒr die Anwendung niedermolekularer Medikamente und Biopharmazeutika. Die drei Herausforderungen fĂŒr synthetische Transportsysteme sind: (i) Kontrolle ĂŒber die Wirkstoffverteilung und Clearance im Blut, (ii) Solubilisierung schlecht wasserlöslicher Wirkstoffe und (iii) selektive Akkumulation in bestimmten Geweben. Obwohl viele Polymer-basierte Systeme die ersten beiden Anforderungen erfĂŒllen und in die klinische Praxis umgesetzt wurden, hat bisher noch kein zielgerichtetes, synthetisches Abgabesystem den Markt erreicht. Dieser Aufsatz soll einen Überblick ĂŒber die Herausforderungen und Anforderungen zur Entwicklung und Umsetzung neuer Polymer-basierter Darreichungssysteme geben. Hauptaugenmerk liegt hierbei auf den chemischen AnsĂ€tzen fĂŒr die Darreichung von Wirkstoffen fĂŒr systemische Anwendungen

    Graphene‐Assisted Synthesis of 2D Polyglycerols as Innovative Platforms for Multivalent Virus Interactions

    Get PDF
    2D nanomaterials have garnered widespread attention in biomedicine and bioengineering due to their unique physicochemical properties. However, poor functionality, low solubility, intrinsic toxicity, and nonspecific interactions at biointerfaces have hampered their application in vivo. Here, biocompatible polyglycerol units are crosslinked in two dimensions using a graphene-assisted strategy leading to highly functional and water-soluble polyglycerols nanosheets with 263 ± 53 nm and 2.7 ± 0.2 nm average lateral size and thickness, respectively. A single-layer hyperbranched polyglycerol containing azide functional groups is covalently conjugated to the surface of a functional graphene template through pH-sensitive linkers. Then, lateral crosslinking of polyglycerol units is carried out by loading tripropargylamine on the surface of graphene followed by lifting off this reagent for an on-face click reaction. Subsequently, the polyglycerol nanosheets are detached from the surface of graphene by slight acidification and centrifugation and is sulfated to mimic heparin sulfate proteoglycans. To highlight the impact of the two-dimensionality of the synthesized polyglycerol sulfate nanosheets at nanobiointerfaces, their efficiency with respect to herpes simplex virus type 1 and severe acute respiratory syndrome corona virus 2 inhibition is compared to their 3D nanogel analogs. Four times stronger in virus inhibition suggests that 2D polyglycerols are superior to their current 3D counterparts.Peer Reviewe
    corecore