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Highlights 

 - Physico-mechanical properties of composite edible films based on eggshell membrane gelatin extracted (G) and 

chitosan (Ch) were investigated 

 - It was found that those films which prepared with the blend 75G: 25Ch and 50G: 50Ch had good mechanical and 

barrier properties. 

 - FTIR was used to evaluate of structural properties and showed that between both polymers are total miscible 

 

Abstract 

This study investigated the physico-mechanical and structural properties of composite edible films based 

on eggshell membrane gelatin (G) and chitosan (Ch) (75G:25Ch, 50G:50Ch, 25G:75Ch). The results 

demonstrated that the addition of Ch increased elongation at break significantly (p< 0.05), but resulted in 

no significant change in tensile strength (TS) using 75G:25Ch, 50G:50Ch mixtures in comparison with 

gelatin-based film. The water solubility and water vapor permeability of the 50G:50Ch film decreased 

significantly compared to plain films (100G:0Ch and 0G:100Ch) and other composite films (p< 0.05). 
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Fourier transform infrared spectroscopy evaluation of structural properties showed that both polymers are 

totally miscible. Scanning electron microscopy was used to study the morphology of the composite films; 

it revealed a homogenous and compact structure in 75G:25Ch and 50G:50 Ch. Also, the chemical 

interactions introduced by the addition of chitosan to eggshell membrane gelatin as new resources could 

improve the films’ functional properties. 

Keywords: Eggshell membrane gelatin; ; , Chitosan, Edible film 

1. Introduction 

To protect industrial foods against oxygen, carbon dioxide, lipids, aroma, flavors and moisture, edible films 

and coating materials are used as substitutes for traditional non-biodegradable plastic films  to provide both 

higher quality and extended shelf-life [1].  The most common sources  of edible films are biopolymers such 

as proteins, carbohydrates, lipids or their blends [2, 3]. One of the most important proteins is gelatin, which 

has a wide range of applications and functional properties, including film-forming ability, abundance and 

biodegradability. The major sources of gelatin for its application in industry are mammal products such as 

porcine and bovine bones and skin. However, the prevalence of prion diseases, foot-and-mouth diseases, 

avian influenza and religious objections has resulted in consumer anxiety  about gelatin and gelatin-derived 

products [4]. Therefore, the use of other sources of gelatin such as fish skin is increasing [5]; however, 

eggshell membrane can also be an important source of gelatin and a replacement for mammalian sources. 

Genotoxicity, cytotoxicity and biochemical properties of eggshell membrane have demonstrated that 

eggshell membrane gelatin is benign in the risk of allergic and autoimmune reactions for different industrial 

applications [6, 7]. Generally,  gelatin is obtained by partially degrading collagen under specific conditions 

of temperature, pH and solvent [8-11]; the edible films obtained from gelatin can be used as a surface 

coating to protect food against oxygen and light due to its abundance, excellent biocompatibility and 

biodegradability and weak antigenicity [9, 12, 13]. Significant differences in molecular structure, amino 
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acid sequence and functional properties of the extracted gelatin from different sources and with different 

extraction conditions have been shown. 

Films produced from gelatin overall have appropriate optical properties, but have weak mechanical 

properties and water barriers, which are the principal disadvantages of gelatin-based films for applications 

such as coating and packaging food [14]. To overcome these limitations, gelatin eggshell membrane has 

been blended with other biopolymers, such as chitosan to improve the hydrocolloid film functionality  

Chitosan, which is obtained from chitin naturally present in crustacean exoskeletons, is one of the most 

plentiful biopolymers. Chitosan-based materials have been used for a wide range of biomedical applications 

[3]. They have  important advantages, such as biodegradability, non-toxicity, biocompatibility and 

functional properties as bacteriostatic and fungi stat [9, 15]. Chemically, chitosan is a natural polymer, 

comprising β-(1,4)-linked N-acetyl-D-glucosamine and D-glucosamine units [9]. Chitosan-based 

composites are useful edible films because of their special characteristics including suitable mechanical 

properties, excellent film-forming capacity and lower gas transfer. Therefore, they can be used in the 

manufacture of edible films for covering foods and designing packaging structures [8, 16]. The compact 

structure and enhanced physical, mechanical and transport properties are fundamental properties of edible 

films made from chitosan and gelatin blends, and are superior to those of films based on single components 

[9, 17, 18]. Furthermore, films made from blends of chitosan and gelatin have been demonstrated as 

homogeneous films because of the fine miscibility between both biopolymers [19]. This is elucidated by 

the formation of polyelectrolyte complexes (PECs) among electrostatic interactions and hydrogen bonding 

between the carboxylate groups of the gelatin and the amine groups of the chitosan [3, 9]. Although many 

studies of chitosan and gelatin from different sources have been conducted, there is no previous report on 

the effect of different proportions of eggshell membrane gelatin and chitosan in the form of composites on 

the functional properties of eggshell membrane gelatin based. Thus, the specific objective of this study was 
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to examine the physico-mechanical and structural properties of eggshell membrane gelatin- chitosan blend 

edible films. 

2. Materials and methods  

2.1. Materials and reagents 

Commercial eggs were used to extract eggshell membrane. The external membranes were washed with 

distilled water and carefully and completely removed manually. Sodium hydroxide, sodium chloride, 

glycerol, acetic acid and tris (hydroxymethyl) aminomethane were purchased from Merck (Darmstadt, 

Germany). Pepsin enzyme with an activity of 750 U/mg proteins and chitosan (medium molecular weight, 

75–85% deacetylated) were bought from Sigma–Aldrich (St. Louis, MO, USA). In this study, all reagents 

and materials were analytical grade. 

2.2. Extraction of gelatin 

Gelatin was extracted from the eggshell membranes pursuant to the method of Mohammadi et al. (2016) 

with  slight modifications [6]. The eggshell membranes were treated with 10 volumes (v/w) of alkali 

solution in 0.2 M NaOH for 18 h with continuous stirring to remove non-collagenous proteins. The 

supernatant was removed and the alkali-treated samples were washed with distilled water until neutral or 

faintly basic pH wash water was obtained. The pre-treated eggshell membranes were drenched in 0.5 mol/l 

acetic acid with pepsin (30 U/mg) for 24 h with continuous stirring to swell the collagenous material in the 

eggshell membrane matrix. To remove undissolved debris, the mixture was filtered with two layers of 

cheesecloth. To inactivate proteases, the pH of the mixture was enhanced to 7.0 with tris (hydroxymethyl) 

aminomethane. The treated eggshell membrane mixtures were then incubated at 45°C for 6 h and stirred 

continuously to extract the gelatin from the eggshell membrane. To remove insoluble material, the mixtures 

were centrifuged at 15,000×g for 20 min using a refrigerated centrifuge. The resultant filtrate was freeze-

dried (ALPHA 2–4; Christ, Harz, Germany). Gelatins obtained were used to prepare the films. 

2. 3. Determination of amino acid composition 
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The gelatin samples were hydrolyzed in 6 N HCl at 110 ºC for 24 h. The hydrolysate was then vaporized, 

and the remainder was dissolved in 25 ml 0.1 N HCl. A 0.4 ml sample was applied to an amino acid analyzer 

(Shimadzu Seisakusho Co. Ltd., Kyoto, Japan). 

2.4. Preparation of the film-forming solutions and films 

Five formulations with diverse ratios of gelatin/chitosan (100G: 0Ch, 75G: 25Ch, 50G: 50Ch, 25G: 75Ch 

and 0G: 100Ch) were prepared. Single-gelatin film-forming solutions (G) were prepared at a concentration 

of 3% in distilled water for 30 min, then stirred continuously while being heated at 45°C. Chitosan solution 

(Ch) was prepared by dissolving chitosan at a concentration of 1.5% in 1% (v/v) aqueous acetic acid. The 

film-forming solutions were prepared at different ratios of gelatin/chitosan (G75:Ch25, G50:Ch50, 

G25:Ch75). For 30 min, all film-forming solutions were stirred and heated at 45 °C to obtain a good blend. 

Glycerol (25% w/w polymer dry matter) was added to all film-forming solutions under stirring (30 min at 

40 °C). After homogenization, the gases in the solutions were removed under vacuum for 30 min to 

eliminate air bubbles, and 50 ml of each solution were poured into plexiglass plates (14 cm diameter). 

Before testing, the dried films were conditioned at 25 °C in a desiccator over a saturated solution of NaBr 

(50±4% RH) for 72 h. 

2.5. Film thickness 

To measure of the thickness of all composite films, a micrometer (Tokyo, Japan) was used and the 

measurements were taken to the nearest 0.001 mm at 10 random locations around each film. Average values 

were used for thickness determination. 

2.6. Mechanical properties 

To determine tensile strength (TS) and elongation at break (EAB), a universal traction-testing machine 

(SMT-20, Santam, Tehran, Iran) equipped with a 60 N load-cell was used, according to the ASTM standard 

method D 882-09 (2009) [20]. Equilibrated film specimens were mounted in the extension grips of the 
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testing machine and stretched with a cross-head speed of 50 mm/min until the samples broke. All 

determinations were the means of at least five measurements. 

2.7. Water solubility 

The films’ water solubility was determined  using the method reported by Cuq et al. (1992) [21]. To obtain 

the initial dry-mass content, four pieces of each film (2 cm × 2 cm) were weighed (±0.0001 g) and then 

dried in an air-circulating oven at 105 °C overnight [21]. After that, to determine their initial dry weight 

(Wi), the films were re-weighed and recovered (± 0.0001 g). Film discs were mixed with 30 mL of distilled 

water at 25°C and stirred at room temperature for 24 h. The remaining undissolved film was removed and 

dried at 105◦C for 24 h and weighed (Wf). Film solubility (FS%) was calculated using the following 

equation: 

FS(%) =
𝑊𝑖 −𝑊𝑓

𝑊𝑖

× 100 

where Wi = initial dry film weight and Wf = final dry film weight. 

2.8. Water vapor permeability 
To determine the films’ water vapor permeability (WVP), the gravimetric method described in the ASTM 

E96-05 (2005) standard  as adjusted to hydrophilic edible films by McHugh, Avena- Bustillos and Krochta 

(1993) was used [22]. Glass circular test cups with an internal diameter of 4 cm and a height of 10 cm were 

filled with distilled water (15 mL), and a film sample was placed in each cup. The cups were then covered 

and kept in a desiccator containing silica gel at room temperature and 0% RH (0 Pa water-vapor pressure). 

The water was transferred along the films, adsorbed by the desiccant, and the film samples were weighed 

to determine the mass loss of the permeation cell. The mass loss of each sample was measured over 10 h, 

with weights recorded at 2 h intervals. The slope of mass loss versus time was achieved with a linear 

regression of R2≥0.99.  The WVP was measured as follows: 

WVP =
WVTR × L

∆P
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where WVTR is the transmission rate of water vapor (g mm/kPa h m2) among the film, and measured from 

the slope of the linear line divided by the film exposed area (m2); L is the mean thickness of film (mm); 

and ΔP is the difference of vapor pressure across the film (KPa). 

2.9. Fourier transform infrared spectroscopy 

Before analysis, to obtain the greatest dehydration possible, all films were conditioned in a desiccators 

containing silica gel for 14 days. The structural interaction of blending in gelatin-based films was observed 

using a fourier transform infrared (FTIR) spectroscope (Bruker Banner Lane, Coventry, Germany). To 

obtain the films’ FTIR spectra, each sample was placed into the spectroscope’s crystal cell and mounted on 

the FTIR spectrometer. The spectrum was measured using an automatic signal over 16 scans in the range 

of 500 - 4000 cm-1 at a resolution of 4 cm-1, and the data were controlled against a background spectrum. 

2.10. Light transmission and transparency 

The rectangular film samples were placed directly onto the spectrophotometer cell. At selected wavelengths 

between 200 and 800 nm, the barrier properties of gelatin films against ultraviolet (UV) and visible-light 

transmission were measured using a UV-visible recording spectrophotometer (Perkins Elmer 

Spectrophotometer, Korea) according to the method described by Fang, Tung, Britt, Yada and Dalgleish 

(2002) [23]. Film transparency was determined by the ratio between the absorbance at 600 nm (A600) and 

film thickness, calculated by the following equation: 

Transparency value = - log T600/x 

where T600 is the fractional transmittance at 600 nm and x is the film thickness (mm).  

2.11. Microstructure studies by scanning electron microscopy 

To visualize the microstructure of the composite edible films’ cryo-fractured cross-section, a scanning 

electron microscope (SEM) (Cambridge Scan-360 microscope) at an accelerating voltage of 3.0 kV was 

used. The film samples were immersed in liquid nitrogen and cryo-fractured. An SEM image was used to 
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visualize the microstructure of the cryo-fractured cross-section of the edible films. Before visualization, 

film samples were coated with a thin gold layer to make them conductive. SEM images were taken at a 

90˚angle to the surface to observe the films’ cross section. 

2.12. Statistical analysis 

Statistical analyses of the data were analyzed using the SPSS statistical program (SPSS 23.0 for Windows, 

SPSS Inc., Chicago, IL, USA) using analysis of variance (ANOVA). The differences between means were 

evaluated by Duncan’s Multiple Range (p<0.05). All tests were repeated three times.  
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3. Results and discussion  

3.1. Amino acid composition of gelatin  

Comparisons of amino acid composition between of gelatin extracted from the eggshell membrane, calf 

skin[24] fish skin[25] and pork skin[26] are shown in Table 1. Similar results had been previously obtained 

from different sources [27]. The most abundant amino acid in the gelatin residues was glycine (318 residues 

per 1000); there were also relatively high contents of alanine (103 residues per 1000), proline (112 residues 

per 1000), glutamic acid/glutamine (98 residues per 1000), hydroxyproline (83 residues per 1000) and 

arginine (62 residues per 1000). Tryptophan was totally absent in eggshell membrane gelatin. Similar to 

other gelatins, the contents of tyrosine, histidine, cysteine, methionine and hydroxylysine were very low. 

The content of total imino acids (proline and hydroxyproline) in gelatin from the eggshell membrane were 

195 residues per 1,000. Imino-acid content is one of the most important characteristics determining gelatins’ 

potential use. These contents were lower than that reported for mammalian gelatins obtained from bovine 

hide (210 residues per 1000) and pork (223 residues per 1000) [28], and lower than that reported for tuna 

skin gelatin (185 residues per 1000), walleye pollock gelatin (184 residues per 1000) and cod skin gelatin 

(156 residues per 1000) [29]. This work agrees with earlier studies from other species in finding that amino 

acid content could vary with species and their habitat. This might be the reason for the differences in 

properties of gelatins between different species. 

3.2. Mechanical properties 

For packaging films, good mechanical properties such as TS and EAB are required  for the films to resist 

external stress and maintain their integrity, as well as to act as barriers during the packaging process [30]. 

The TS, EAB and thickness of the gelatin-chitosan films and control films (gelatin or chitosan film) are 

shown in Table 2.  Films from eggshell membrane gelatin (G100:0Ch) indicated average TS and EAB values 

of 32.521 ± 0.995 MPa and 3.52 ± 0.74%, respectively; these values were in the range reported by other 
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researchers [31] and higher than that reported for fish gelatin-chitosan composite films by Hosseini et al. 

(2013) and lower than that reported for gelatin-chitosan blend edible films by Jridi et al. (2014) [13, 32]. In 

contrast, chitosan film demonstrated a significantly lower (p <0.05) TS (18.252 MPa) but a higher EAB 

(39.821%) (p < 0.05)  than those of gelatin and composite films. Many researchers have reported that, 

generally, protein-based films have more desirable mechanical properties than films formed  using only 

polysaccharides [9]. A comparison of composite edible films with gelatin films showed that the increased 

chitosan content in the former led to increased EAB values, which indicated stronger films; however, the 

presence of chitosan didn’t significantly reduce the TS values. These results were completely different from 

those reported by other researchers [3, 32, 33], who had concluded that chitosan-based film  was harder 

and tougher than gelatin-chitosan film, which they found to be soft and flexible. Overall, the mechanical 

properties of gelatin-chitosan films depend on multiple parameters including the molecular mass of the 

polymer of the chitosan, deacetylation degree, pH of the film-forming solution, drying conditions, 

solubilisation method, water content and film thickness. Hence, the comparison with the previous studies 

for TS tests suggests opposite conclusions [9, 18].   

3.3. Film solubility 

Solubility in water is one of the important properties of composite edible films. As  shown in Table 2, the 

water solubility of eggshell membrane gelatin films was relatively high at around 91.33%; this was in 

accordance with the values reported by Jridi et al. (2014) (90.68%) for films obtained from cuttlefish-skin 

gelatin, and was considerably higher than the values reported for gelatin from cold-water fish skin (63.81% 

), bovine gelatin (51.64%)  catfish-skin gelatin and cod-skin gelatin (25%) films [9, 13, 32, 34]. This could 

be explained by higher prolin and hydroxyprolin content, the molecular weight of the extracted gelatin and 

the extraction method (enzyme or traditional). In contrast, chitosan film indicated a modest solubility in 

water (52.35%). Some level of electrostatic forces and hydrogen bonding interaction between gelatin and 

chitosan were detected due to the addition of chitosan and indicated by the enhanced water resistance of 
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eggshell membrane gelatin film. The films’ decreased FS was related to blending with chitosan; this has 

also been reported by other researchers [3, 9, 13, 32]. A 50% (w/w) proportion of gelatin content provided 

the most resistance to solubility and indicated considerable physical interference among the gelatin 

polypeptide chains within the film matrix [13]. 

3.4. Water vapor permeability (WVP) 

Although commercially available synthetic polymers effectively control water vapor and gas permeability, 

edible films  are used for packaging processed foods to prevent movement of gases and water; thus, their 

WVP should be as low as possible [21]. The WVP values for films prepared with eggshell membrane 

gelatin, chitosan and composite films are presented in Table 2. According to previous studies, the water 

vapor barrier of films is significantly (p < 0.05) affected by plasticizer concentration, film thickness and 

relative humidity gradient, gelatin origin and extraction method [35]. Increases in the level of water vapor 

transmission for gelatin films (2.935 ± 0.114 ×10−11 g m−1 s−1 Pa−1) were probably caused by an increase in 

the free volume of the film matrix, which increased the mobility of the polymeric chains, due to the 

incorporation of glycerol between protein chains and the presence of a broad range of hydrophilic amino 

acids (especially prolin and hydroxyl prolin) [35]. Furthermore, the extraction of gelatin from eggshell 

membrane using the enzymatic method, could be incorporated in the protein network, leading to reduced 

density of intermolecular interactions between gelatin polymeric networks [13]. The WVP of gelatin films 

has been previously investigated by other researchers. Comparisons between different authors are difficult 

due to differences in the gelatin extraction method, film manufacture and measurement procedures. 

Chitosan films demonstrated better WVP properties than gelatin films (0.465 ×10−11 g m−1 s−1 Pa−1). As Ch 

was added, the WVP of composite films significantly decreased; for example, the declines for composite 

films with 75G:25Ch and 50G:50Ch ratios were more than 100 and 300% respectively (p < 0.05). This 

could be  because the chitosan might cross-link with gelatin by inter-molecular bonding (e.g. electrostatic 

and hydrogen bonding) and reduce the free volume or a densification of the network mesh of the polymeric 

matrix, thus reducing the diffusion rate of water molecules through the films and resulting in their lower 
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WVP [32]. The improvement of the barrier permeability of chitosan by a gelatin addition in bovine hide 

gelatin and chitosan based films was reported by Pereda et al. (2011) [3]. In contrast, Kolodziejska and 

Piotrowska (2007) found  that films based on cod-skin gelatin films had lower values for WVP [36].  

3.5. Light transmission and transparency 

Transmission of UV and visible light at selected wavelengths from 200-800 nm was determined. The values 

for the transparency of gelatin, chitosan and composite films at 600 nm are presented in Table 3. 

Transmission in the visible range (350-800 nm) of gelatin films ranged between 58.21 and 90.73%. The 

transmission of UV light was very low at 200 nm for all films (0.03 to 0.09 %), and at 280 nm the composite 

films the transmission increased when chitosan was added (8.65% to 41.65%). Generally, by adding protein 

concentration, light transmission for both visible and UV ranges (200–800 nm) declined. This could mean 

that the gelatin-containing films effectively  failed to block UV,  causing discoloration, nutrient losses, off-

flavors and oxidative deterioration of packaged foods [16]. This result is similar to previous investigations 

of gelatin-based films, which showed that due to high amounts of aromatic amino acids such as tyrosine 

and phenylalanine, which absorb UV light, protein-based films have high UV barrier properties [16, 34, 

37]. The reason for the difference in light transmission between films from different gelatin sources might 

be the differences in amino-acid composition, the degree of hydrolyzation and the aggregation or alignment 

of gelatin molecules due to gelatin enzymatic hydrolysis [38]. As shown in Table 3, the gelatin film was 

less [?] transparent than the composite and chitosan films (0.879 A600/mm). The resulting values were 

higher than those reported by Pereda et al. (2011) (0.68 A600/mm) and lower than those reported by Rivero 

et al. (2009) for bovine-gelatin films (0.97 A600/mm) [18]. Therefore, the addition of chitosan to gelatin 

lowered transparency values and, thus, increased opacity. This result is accordance with previous reports 

on gelatin-chitosan films [32]. The difference in transparency among films with different mass ratios of 

gelatin/chitosan could be caused by the difference in color, thickness, concentration of extracts and 

formation of poly-anion/cation complexes. Especially if the film is used as a coating or for improving 

product appearance, film opacity is one of the most critical film properties.  
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3.6. FTIR of films made from chitosan-gelatin blends  

Figure 1 shows the FTIR spectra of eggshell membrane gelatin, chitosan and composite films.  Results 

obtained from chitosan film are in accordance with those described by other authors [9, 39, 40]. The spectra 

of eggshell membrane gelatin-based film showed main bands at approximately 3385.9 (NH-stretching 

coupled with hydrogen bonding (amides A)), 2946.2 (asymmetric stretching vibration of C H and NH3
+ 

(amide B)), 1654.1(C=O stretching/hydrogen bonding coupled with COO at 1636 cm−1 (amide-I)), 1552.5 

(fluctuation mode is attributed to an out-of-phase combination of CN stretch and in-plane NH deformation 

modes of the peptide group at 1550 cm−1 (amide-II))  and 1239.2 cm−1 fluctuation in the plane of C-N and 

N-H groups of bound amide or fluctuation of CH2 groups of glycine at 1239 cm−1 (amide- III). Liu et al. 

(2012) reported a different spectrum for gelatin-based film extracted from the skin of walleye pollock 

(Theragra chalcogramma), where amide A , amide I, amide II and amide III peaks were found at the 

wavelengths of 3299 (amide A), 1658 (amide I), 1544 (amide II) and 1243 cm−1 amide III, respectively 

[29]. Interaction of gelatins in edible films was affected by the functional group, secondary structure, gelatin 

source and methods of gelatin extraction (enzymatic or traditional). In composite film, because of the blend 

formulation, the intensity of the characteristic peaks was changed. From the spectra, the amide-I (CO) and 

amide-III (CN, NH) peaks of the composite film showed a slight but significant shift in the broad absorption 

band wavelengths from those of gelatin film with increases in the proportion of chitosan. In comparison to 

the secondary structure change, the amide II peak is considered to be much more sensitive to hydration; 

that might be due to feasible transformation in the protein secondary structure [9]. Furthermore, increasing 

the chitosan proportion in the film led to conformational changes in the gelatin polypeptide chains and 

subsequent decreases in the random coils, single helices and disordered structures, as demonstrated by the 

decreased intensity of the peak in the range of 1640 to 1552 cm−1 [9, 32]. Consequently, the molecular 

interactions among the biopolymers were observed in the spectra, and are not related to a simple mixture 

or networks in the blend structure. This effect was most obvious in the mixture with a ratio of 75G:25Ch, 
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reaching intermediate amounts in mixtures 50G: 50Ch. Researchers proposed that this change may be a 

result of the presence of amino and carbonyl groups, since in general these groups interact electrostatically 

[32]. 

3.7. Microstructural properties 

SEM was used to study microstructural changes in the edible films and to visualize the surface and cross-

section topography of eggshell membrane gelatin, chitosan and composite edible films (Figure 2). Dense, 

homogenous and smooth structures without any large holes and pores were found using SEM testing of the 

fragment cross-section of composite edible films (75G:25Ch and 50G:50Ch).  This represents excellent 

structural integrity  compared to other blends made from proteins, such as quinoa protein/chitosan [39], 

whey-protein isolate gelatin composite [34] and oleic acid/CH films [41]. This result shows that the gelatin 

and chitosan were completely dissolvable and highly compatible at 75G: 25Ch and 50G: 50Ch due to 

associative interactions. The greater intermolecular aggregation in the three-dimensional network of 

eggshell  membrane gelatin under cross-linking via covalent and non-covalent bonding was created by the 

addition of chitosan [29].  At the 25G:75Ch and 0G:100Ch levels, the free spaces were increased and the 

films’ structure was loosened. Disconnection of film matrix could occur due to the high content of chitosan 

in the composite edible film and the low interaction of protein molecules. The higher TS (Table 2) of the 

films could be due to the condensed cross-section of the composite edible films with high contents of 

eggshell membrane gelatin, as shown by FTIR spectroscopy.  

4. Conclusions 

In the present report, gelatin extracted from eggshell membrane was used to produce edible films. The 

addition of chitosan with negatively charged polysaccharides showed that it could be a useful component to 

improve the mechanical properties and decrease the solubility and WVP of gelatin films. It was found that 

those films prepared with the blend 75G:25Ch and 50G:50Ch had good mechanical and barrier properties. 

These findings demonstrate these films’ high potential for use in packaging materials to improve food quality, 
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and further studies would be required to investigate potential performance improvement for industrialized 

use of the film in commercial food systems  

. 
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FIGURE CAPTIONS 

Figure. 1. FTIR spectra of eggshell membrane gelatin, chitosan and composite films 

Figure. 2. SEM micrographs (cryo-fractured cross-section) of eggshell membrane gelatin, chitosan and 

composite films. 
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 Table 1. Amino acids compositions of eggshell membrane compared to Calf skin [39], fish skin[40] and pork skin[41]. 
 

 

Amino acid Eggshell Calf skin Fish Pork 

Aspartic acid 55 68 50 46 

Glutamic acid 98 109 69 72 

Threonine 23 20 27 18 

Serine 34 35 37 35 

Glycine 318 241 340 330 

Alanine 103 78 133 112 

Valine 20 28 23 26 

Methionine 9 ND 11 4 

Cysteine 4 10 2 ND 

Isoleucine 13 17 12 10 

Leucine 24 33 20 24 

Tyrosine 6 6 4 3 

Phenylalanine 8 24 14 14 

Histidine 7 11 6 4 

Arginine 62 73 50 49 

Lysine 21 40 28 27 

Hydroxyproline 83 99 68 91 

Proline 112 117 106 132 

Imino acids 195 208 174 223 

  Table 2. Mechanical properties, thickness, WVP and water solubility of composite films. 

Films TS (MPa) EAB (%) WVP 

(×10−11 g m−1 

s−1 Pa−1) 

Film 

solubility 

Thickness 

(mm) 

100 G: 0Ch 32.521 ± 

0.99a 

3.52 ± 

0.74 e 

2.935 ± 

0.114 a 

91.33±1.06 

a 

0.083 ± 

0.006 a 

75 G:25Ch 31.624 ± 

1.15 a 

16.04 ± 

0.32 d 

1.023 ± 

0.071 b 

56.28±0.66 

b 

0.067 ± 

0.008 b 

50G:50Ch 28.167 ± 

0.81 b 

21.731 ± 

0.17 c 

0.827 ± 

0.093 c 

48.33±1/21 

c 

0.065 ± 

0.002 b 

25 G:75Ch 20.773 ± 

1.33 c 

25.921 ± 

0.36 b 

0.573 ± 

0.102 d 

50.45±0.45 

d 

0.057 ± 

0.005 c 

100Ch:0G 18.252 ± 

0.94 b 

39.821 ± 

0.29 a 

0.465 ± 

0.057 e 

52.35±1.47 

e 

0.047 ± 

0.007 d 
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Table 3. Light transmission and transparency. 

Films                    

Wavelength(nm) 

    Transparency 

values 

200 280 350 400 500 600 800 

100G:0Ch 0.03 8.65 58.21 65.31 73.26 84.53 90.73 0.879 

75G:25Ch  0.03 10.32 59.83 68.29 74.35 85.11 91.17 1.045 

50G:50Ch  0.04 21.30 54.31 68.73 71.14 84.79 90.65 1.102 

25G:75Ch 0.06 32.44 56.47 67.45 70.64 83.42 90.55 1.381 

Ch100:0G 0.09 41.65 57.19 63.74 68.40 81.37 90.10 1.905 

 


