72 research outputs found
How to exploit fitness landscape properties of timetabling problem: A newoperator for quantum evolutionary algorithm
© 2020 Elsevier Ltd. All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1016/j.eswa.2020.114211The fitness landscape of the timetabling problems is analyzed in this paper to provide some insight into theproperties of the problem. The analyses suggest that the good solutions are clustered in the search space andthere is a correlation between the fitness of a local optimum and its distance to the best solution. Inspiredby these findings, a new operator for Quantum Evolutionary Algorithms is proposed which, during the searchprocess, collects information about the fitness landscape and tried to capture the backbone structure of thelandscape. The knowledge it has collected is used to guide the search process towards a better region in thesearch space. The proposed algorithm consists of two phases. The first phase uses a tabu mechanism to collectinformation about the fitness landscape. In the second phase, the collected data are processed to guide thealgorithm towards better regions in the search space. The algorithm clusters the good solutions it has foundin its previous search process. Then when the population is converged and trapped in a local optimum, itis divided into sub-populations and each sub-population is designated to a cluster. The information in thedatabase is then used to reinitialize the q-individuals, so they represent better regions in the search space.This way the population maintains diversity and by capturing the fitness landscape structure, the algorithmis guided towards better regions in the search space. The algorithm is compared with some state-of-the-artalgorithms from PATAT competition conferences and experimental results are presented.Peer reviewe
A genetic programming-based convolutional deep learning algorithm for identifying COVID-19 cases via X-ray images
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Evolutionary algorithms have been successfully employed to find the best structure for many learning algorithms including neural networks. Due to their flexibility and promising results, Convolutional Neural Networks (CNNs) have found their application in many image processing applications. The structure of CNNs greatly affects the performance of these algorithms both in terms of accuracy and computational cost, thus, finding the best architecture for these networks is a crucial task before they are employed. In this paper, we develop a genetic programming approach for the optimization of CNN structure in diagnosing COVID-19 cases via X-ray images. A graph representation for CNN architecture is proposed and evolutionary operators including crossover and mutation are specifically designed for the proposed representation. The proposed architecture of CNNs is defined by two sets of parameters, one is the skeleton which determines the arrangement of the convolutional and pooling operators and their connections and one is the numerical parameters of the operators which determine the properties of these operators like filter size and kernel size. The proposed algorithm in this paper optimizes the skeleton and the numerical parameters of the CNN architectures in a co-evolutionary scheme. The proposed algorithm is used to identify covid-19 cases via X-ray images.Peer reviewe
An evolutionary ensemble learning for diagnosing COVID-19 via cough signals
© 2023 Published by Elsevier B.V. on behalf of Chinese Medical Association. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)Objective The spread of the COVID-19 disease has caused great concern around the world and detecting the positive cases is crucial in curbing the pandemic. One of the symptoms of the disease is the dry cough it causes. It has previously been shown that cough signals can be used to identify a variety of diseases including tuberculosis, asthma, etc. In this paper, we proposed an algorithm to diagnose the COVID-19 disease via cough signals. Methods The proposed algorithm was an ensemble scheme that consists of a number of base learners, where each base learner used a different feature extractor method, including statistical approaches and convolutional neural networks (CNNs) for automatic feature extraction. Features were extracted from the raw signal and some transforms performed it, including Fourier, wavelet, Hilbert-Huang, and short-term Fourier transforms. The outputs of these base-learners were aggregated via a weighted voting scheme, with the weights optimised via an evolutionary paradigm. This paper also proposed a memetic algorithm for training the CNNs in the base-learners, which combined the speed of gradient descent (GD) algorithms and global search space coverage of the evolutionary algorithms. Results Experiments were performed on the proposed algorithm and different rival algorithms which included a number of CNN architectures in the literature and generic machine learning algorithms. The results suggested that the proposed algorithm achieves better performance compared to the existing algorithms in diagnosing COVID-19 via cough signals. Conclusion COVID-19 may be diagnosed via cough signals and CNNs may be employed to process these signals and it may be further improved by the optimization of CNN architecture.Peer reviewe
A Novel Ensemble Machine Learning and an Evolutionary Algorithm in Modeling the COVID-19 Epidemic and Optimizing Government Policies
© 2022 IEEE. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1109/TSMC.2022.3143955The spread of the COVID-19 disease has prompted a need for immediate reaction by governments to curb the pandemic. Many countries have adopted different policies and studies are performed to understand the effect of each of the policies on the growth rate of the infected cases. In this article, the data about the policies taken by all countries at each date, and the effect of the policies on the growth rate of the pandemic are used to build a model of the pandemic's behavior. The model takes as input a set of policies and predicts the growth rate of the pandemic. Then, a population-based multi objective optimization algorithm is developed, which uses the model to search through the policy space and finds a set of policies that minimize the cost induced to the society due to the policies and the growth rate of the pandemic. Because of the complexity of the modeling problem and the uncertainty in measuring the growth rate of the pandemic via the models, an ensemble learning algorithm is proposed in this article to improve the performance of individual learning algorithms. The ensemble consists of ten learning algorithms and a metamodel algorithm that is built to predict the accuracy of each learning algorithm for a given data record. The metamodel is a set of support vector machine (SVM) algorithms that is used in the aggregation phase of the ensemble algorithm. Because there is uncertainty in measuring the growth rate via the models, a landscape smoothing operator is proposed in the optimization process, which aims at reducing uncertainty. The algorithm is tested on open access data online and experiments on the ensemble learning and the policy optimization algorithms are performed.Peer reviewe
Applications of Artificial Intelligence in Battling Against Covid-19: A Literature Review
© 2020 Elsevier Ltd. All rights reserved.Colloquially known as coronavirus, the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), that causes CoronaVirus Disease 2019 (COVID-19), has become a matter of grave concern for every country around the world. The rapid growth of the pandemic has wreaked havoc and prompted the need for immediate reactions to curb the effects. To manage the problems, many research in a variety of area of science have started studying the issue. Artificial Intelligence is among the area of science that has found great applications in tackling the problem in many aspects. Here, we perform an overview on the applications of AI in a variety of fields including diagnosis of the disease via different types of tests and symptoms, monitoring patients, identifying severity of a patient, processing covid-19 related imaging tests, epidemiology, pharmaceutical studies, etc. The aim of this paper is to perform a comprehensive survey on the applications of AI in battling against the difficulties the outbreak has caused. Thus we cover every way that AI approaches have been employed and to cover all the research until the writing of this paper. We try organize the works in a way that overall picture is comprehensible. Such a picture, although full of details, is very helpful in understand where AI sits in current pandemonium. We also tried to conclude the paper with ideas on how the problems can be tackled in a better way and provide some suggestions for future works.Peer reviewe
Meta-heuristic algorithms in car engine design: a literature survey
Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system
Estimating exposure to fine particulate matter emissions from vehicle traffic: Exposure misclassification and daily activity patterns in a large, sprawling region
Vehicle traffic is responsible for a significant portion of toxic air pollution in urban areas that has been linked to a wide range of adverse health outcomes. Most vehicle air quality analyses used for transportation planning and health effect studies estimate exposure from the measured or modeled concentration of an air pollutant at a person’s home. This study evaluates exposure to fine particulate matter from vehicle traffic and the magnitude and cause of exposure misclassification that result from not accounting for population mobility during the day in a large, sprawling region. We develop a dynamic exposure model by integrating activity-based travel demand, vehicle emission, and air dispersion models to evaluate the magnitude, components and spatial patterns of vehicle exposure misclassification in the Atlanta, Georgia metropolitan area. Overall, we find that population exposure estimates increase by 51% when population mobility is accounted for. Errors are much larger in suburban and rural areas where exposure is underestimated while exposure is may also be overestimated near high volume roadways and in the urban core. Exposure while at work and traveling account for much of the error. We find much larger errors than prior studies, all of which have focused on more compact urban regions. Since many people spend a large part of their day away from their homes and vehicle emissions are known to create “hotspots” along roadways, home-based exposure is unlikely to be a robust estimator of a person’s actual exposure. Accounting for population mobility in vehicle emission exposure studies may reveal more effective mitigation strategies, important differences in exposure between population groups with different travel patterns, and reduce exposure misclassification in health studies
On the landscape of combinatorial optimization problems
This paper carries out a comparison of the fitness landscape for four classic optimization problems: Max-Sat, graph-coloring, traveling salesman, and quadratic assignment. We have focused on two types of properties, local average properties of the landscape, and properties of the local optima. For the local optima we give a fairly comprehensive description of the properties, including the expected time to reach a local optimum, the number of local optima at different cost levels, the distance between optima, and the expected probability of reaching the optima. Principle component analysis is used to understand the correlations between the local optima. Most of the properties that we examine have not been studied previously, particularly those concerned with properties of the local optima. We compare and contrast the behavior of the four different problems. Although the problems are very different at the low level, many of the long-range properties exhibit a remarkable degree of similarity
Charging demand of Plug-in Electric Vehicles: Forecasting travel behavior based on a novel Rough Artificial Neural Network approach
The market penetration of Plug-in Electric Vehicles (PEVs) is escalating due to their energy saving and environmental benefits. In order to address PEVs impact on the electric networks, the aggregators need to accurately predict the PEV Travel Behavior (PEV-TB) since the addition of a great number of PEVs to the current distribution network poses serious challenges to the power system. Forecasting PEV-TB is critical because of the high degree of uncertainties in drivers’ behavior. Existing studies mostly simplified the PEV-TB by mapping travel behavior from conventional vehicles. This could cause bias in power estimation considering the differences in PEV-TB because of charging pattern which consequently could bungle economic analysis of aggregators. In this study, to forecast PEV-TB an artificial intelligence-based method -feedforward and recurrent Artificial Neural Networks (ANN) with Levenberg Marquardt (LM) training method based on Rough structure - is developed. The method is based on historical data including arrival time, departure time and trip length. In this study, the correlation among arrival time, departure time and trip length is also considered. The forecasted PEV-TB is then compared with Monte Carlo Simulation (MCS) which is the main benchmarking method in this field. The results comparison depicted the robustness of the proposed methodology. The proposed method reduces the aggregators’ financial loss approximately by 16 $/PEV per year compared to the conventional methods. The findings underline the importance of applying more accurate methods to forecast PEV-TB to gain the most benefit of vehicle electrification in the years to come.Peer ReviewedPostprint (author's final draft
- …