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Objective The spread of the COVID-19 disease has caused great concern around the world and detecting the 

positive cases is crucial in curbing the pandemic. One of the symptoms of the disease is the dry cough it causes. It 

has previously been shown that cough signals can be used to identify a variety of diseases including tuberculosis, 

asthma, etc. In this paper, we proposed an algorithm to diagnose the COVID-19 disease via cough signals. 

Methods The proposed algorithm was an ensemble scheme that consists of a number of base learners, where 

each base learner used a different feature extractor method, including statistical approaches and convolutional 

neural networks (CNNs) for automatic feature extraction. Features were extracted from the raw signal and some 

transforms performed it, including Fourier, wavelet, Hilbert-Huang, and short-term Fourier transforms. The out- 

puts of these base-learners were aggregated via a weighted voting scheme, with the weights optimised via an 

evolutionary paradigm. This paper also proposed a memetic algorithm for training the CNNs in the base-learners, 

which combined the speed of gradient descent (GD) algorithms and global search space coverage of the evolu- 

tionary algorithms. 

Results Experiments were performed on the proposed algorithm and different rival algorithms which included a 

number of CNN architectures in the literature and generic machine learning algorithms. The results suggested that 

the proposed algorithm achieves better performance compared to the existing algorithms in diagnosing COVID- 

19 via cough signals. 

Conclusion COVID-19 may be diagnosed via cough signals and CNNs may be employed to process these signals 

and it may be further improved by the optimization of CNN architecture. 
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. Introduction 

As the COVID-19 pandemic is ravaging across the world, identifying

he COVID-19 positive cases is a matter of crucial importance in the

attle against the spread of the disease. Testing capacity, in terms of

uman and financial resources remains a challenge in many countries. In

his respect, many machine learning techniques have been developed for

he early identification of the cases [1] via faster and cheaper methods.

Human audio signals contain valuable information about many as-

ects of a person’s condition. Previous studies have processed these sig-

als to identify people’s health condition. Examples of these include

rocessing voice signal to identify one’s personality [2] , children psy-

hiatry [3] , depression [4] , tuberculosis detection [5] , asthmatic detec-

ion [6] , sleep apnea detection [7] , breathing rate measurement [8] ,

tress detection [9] , child pneumonia [10] , pertussis [11] , among

thers. 

Using cough signals to identify COVID-19 cases has been the fo-
us of a number of studies. One of the best efforts has used Mel Fre- 
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uency Cepstral Coefficients (MFCCs) of cough signals to train a con-

olutional neutral network (CNN) architecture (ResNet50) to identify

ositive cases [12] . Cough signals collected via phone calls can be used

o identify positive cases [13] . A deep learning architecture is proposed

hich consists of two sub-network components [14] . The first compo-

ent captures hidden features and the second one identifies deeper tem-

oral acoustic features of cough signals. A CNN with three feature ex-

raction and three classification layers to identify positive cases has been

roposed in [15] . MFCC features are used to build a model via symbolic

ecurrence quantification measures to diagnose the cases via cough sig-

als [16] . A transfer learning algorithm has been proposed to overcome

he current shortage of data in this domain [17-18] . 

Cough and breathing signals are collected and processed to iden-

ify the positive cases [19] . The authors show that even simple learn-

ng algorithms are capable of diagnosing the cases. It is shown that

peech signals can also be used for the classification problem [20] .

ther studies that use cough signals for diagnosing the disease include

21-22] . 
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An ensemble learning algorithm is proposed [23-24] to de-

ect the disease via cough signals. A comparison between different

lassification algorithms in detecting COVID-19 is performed [25] . To

iagnose the disease via cough signals, an automated extraction of time-

requency features is proposed [26] . 

In ensemble learning, multiple learning algorithms, called base-

earners are combined to immprove overall pattern recognition perfor-

ance. The idea behind ensemble learning techniques is that weak-

esses of individual base-learners are balanced by the strength of others

sometimes interpreted as the “wisdom of crowd ” in the machine learn-

ng context). There are several reasons why an ensemble of learners im-

roves the performance [27–29] ). First, by having a number of learning

lgorithm each building their own hypothesis mitigates the overfitting

roblem. Second, combining the output of a number of base-learners

ecreases the risk of getting stuck in local optima. Third, combining dif-

erent models provides an extended view that increases the chance of

eaching the optimal hypothesis that may be outside the ability of the

ingle learners. Fourth, since an increased number of features results in

n exponential increase in the size of the search space (known as the

urse of dimensionality [30] ), splitting the feature space into smaller

ieces and using an ensemble of learners can mitigate this problem, too.

To reach good performance, the base learners should be diverse.

here are different ways of achieving the required diversity. Input ma-

ipulation is to train the base learners via different subsets of training

ata [31] . Manipulation of the learning algorithm is performed by manip-

lating the way the base learners traverse the hypothesis space, so each

earner is led to a different convergence path [32] . Partitioning refers

o partitioning the dataset into smaller pieces and using each partition

or a base-learner [33] . Output manipulation refers to the methods in

hich some binary classifiers are combined into a single multi-class clas-

ifier [34] . 

After the base-learner models have been created, the output of these

lgorithms needs to be aggregated. These approaches can be categorized

s follows. 

Weighting methods combine outputs using a weighted sum. Majority

oting is the simplest method [35] . In regression problems, this is per-

ormed by averaging the output over the base-learners [36] . Some ex-

mples of these approaches include the weighted averaging based on the

ase-learners strength [37] , Bayesian combination in which the weights

re determined to maximize the probabilistic likelihood of the model

ased on the dataset [38] and weighted averaging based on the confi-

ence of each base-learner [39] . 

Meta-learning methods use the output of the base-learners as in-

ut to the meta-learner which acts as the output layer. Meta-learners

re trained to model how different base-learners perform on different

ubspaces. Example of these approaches include stacking [40] which

odels the performance of each base learner on the original dataset,

eighted bagging [41] , which uses a kernel density estimator to assign

he weights based on their closeness to the target set, and mixture of

xperts which is based on the idea of divide-and-conquer to divide the

pace into a number of experts [42] . 

In this study, we propose an evolutionary ensemble classification

EEC) algorithm to diagnose COVID-19 cases via cough signals. The pro-

osed algorithm achieves diversity by using different sets of features for

ach of the base-learners in the ensemble. The feature extractors used in

his paper include statistical approaches and CNNs for automatic feature

xtraction from the audio signals. As well as extracting features from raw

ignals, the proposed method performs some transforms on the signals to

xtract frequency-domain features, including Fourier, wavelet, Hilbert-

uang, and short-term Fourier transforms. Each of the base-learners per-

orms classification based on the features adopted via one of the feature

xtraction methods. Each base-learner uses different types of features. 

The output of some transform functions, like the wavelet transform,

re 2D signals, similar to images. Since CNNs are very powerful for auto-

atically extracting features from images, these algorithms are adopted

n this paper to process the transformed signals. An evolutionary algo-
201 
ithm is proposed in this paper to find the optimal CNN architecture for

ach feature set. The outputs of these base-learners are aggregated in an

ggregation layer which uses a weighted averaging scheme. The weights

f the base-learners in the voting scheme are found via an evolutionary

raining algorithm. 

To train the CNNs, a memetic algorithm is proposed in this paper

hich is a mixture of a Gradient Descent (GD) algorithm and an evo-

utionary algorithm. GD algorithms typically are quick to reach a rea-

onable solution, but suffer from the problem of getting stuck in local

ptima. In contrast, the advantage of evolutionary algorithms is their

lobal search, at the expense of larger computational effort. By com-

ining the two, the proposed algorithm benefits from the speed of GD

lgorithms and the global search of evolutionary algorithms. 

The proposed algorithm is different from the existing methods for

OVID-19 diagnosis via cough signals in different aspects. First, this

s the first research that tries to find the optimal CNN architecture for

rocessing cough signals. This is different from the existing methods

hat use generic architectures that are not necessarily suitable for this

articular problem. Second, the proposed combination of evolutionary

nd gradient-based training of CNNs for cough signal processing has

ot been presented in the literature. Third, extracting features from the

pectrogram of cough signals via CNNs and processing them as images is

ovel. Forth, extracting this large number of features and incorporating

hem into a group of machine learning algorithms has not been done in

he literature before. Finally, the proposed ensemble learning algorithm

hich is a combination of different machine learning algorithms and

ifferent features has not been addressed before. 

This paper is organized as follows. Section 2.1 describes the CNN

lgorithms and architecture optimization, Section 2.2 explores the other

ase-learner algorithms and their aggregation, Section 3.2 reports the

xperimental results and Section 4 concludes the paper. 

. Methods 

.1. Data acquisition 

In this paper, the COUGHVID [43] data are used to diagnose COVID-

9 via cough signals. The dataset contains over 20,000 cough recordings

hich include data about age, gender, location and COVID-19 diagno-

is. These data were collected via a web application on a server located

t the cole Polytechnique Fdrale de Lausanne (EPFL), Switzerland. The

uthors then developed a cough detection software [44] which deter-

ines the degree of certainty to which a recording contains a cough.

he dataset contains this as a probability between zero and one. We

elied on these values to select the data and omitted the data records

or which the probability of containing a cough signal is below 0.5.

fter preprocessing the data, 8,407 of the data records were selected

or the training and classification purposes. Among these, 6,466 cases

ere healthy, 658 cases are COVID-19 and 1,283 cases are symptomatic.

ome data were removed due to containing noise, including background

ound, etc. Then the silent segments of the signals were removed and

nly the part of the signal containing the cough were used. 

.2. Optimizing convolutional neural networks architecture 

Due to their outstanding performance and flexibility, CNNs have

ound numerous applications in a variety of areas in the pattern recog-

ition fields. These networks are a type of feed-forward neural network

hat processes input signals and automatically extracts features for pat-

ern recognition tasks. The architecture of CNNs is presented in Figure 1 .

he network consists of a number of convolution and pooling layers that

re applied to the input image. The features are extracted by the network

ia these operators to be processed by a pattern recognition algorithm at

he fully connected layers at the tail of the architecture. In this example

n Figure 1 , there are four groups of feature maps with one fully con-

ected layer at the tail. A convolutional operator extracts features from

he previous layer, like a filter. The convolution is performed by sliding
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Figure 1. The architecture of CNNs, consisting of a combination of convolution 

and pooling operators. 

Table 1 Tunable parameters of a CNN that are critical for pattern recognition 

performance 

Convolutional operators Pooling operators 

Convolutional type Pooling type 

Filter width Kernel width 

Filter height Kernel height 

Stride width Stride width 

Stride height Stride height 

Connection weight 

Number of feature maps 
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he filter, in the form of a matrix, over the images, thereby creating a

eature map. The filter slides on the image with a step size called stride.

t each step, the dot product of the pixels in the filters with the corre-

ponding pixels in the image is calculated and stored in the pixels in the

eature map. The convolutional operators have parameters that need to

e tuned to achieve good performance; this process is called learning .

he parameters of this operator are summarized in Table 1 . 

The pooling operators are similar to the convolutional operators in

hat they traverse over the images to process the data. The operator uses

 matrix, called the kernel, to combine the data from the previous layer,

y collecting the average or the maximum values within the kernel.

his reduces the size of the representation, and thereby the amount of

omputation, the required memory, and the number of parameters. The

arameters of this operator are summarized in Table 1 . 

The fully connected layer at the tail of the network which is con-

ected to all the neurons in the previous layer performs the final classi-

cation. 

The ordering of pooling and convolutional layers, operators and pa-

ameters are known as the CNN architecture and play a crucial role in

he performance of the algorithm. There is not one CNN architecture

hat performs equally well for all problems. Therefore, when solving a

attern recognition problem, part of the solution will be to optimize the

NN architecture for the problem. This is usually achieved by trial and

rror, plus some expert knowledge of the CNN designer. In this paper,

e adopt an evolutionary algorithm to find the best CNN architecture

or COVID-19 diagnosis via cough signals. In the optimization process,

he number and order of the pooling and convolutional operators, along

ith the numerical parameters of the architecture, (kernel, filter and

tride size, pooling type, etc.) are optimized. Algorithm 1 is proposed in

his paper to optimize the CNN architecture. 
Algorithm 1 Evolutionary optimization of CNN architecture. 

begin 

set the parameters m , n and l 

𝜏 = 0 
1. initialize the population X 0 

2. while not termination condition do 

begin 

3. find the fitness of the individuals in X 𝜏

4. select the parent solutions 

5. use crossover to generate offsprings and store in O 𝜏

6. apply mutation on O 𝜏 with probability m 

7. perform selection on X 𝜏 ∪ O 𝜏 and store in X 𝜏+ 1 

𝜏 = 𝜏+ 1 
end 

8. return the best solution in X 𝜏

end 
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At first, in the proposed algorithm, the parameters of the algorithm,

 the mutation rate, 𝑛 the number of individuals in the population and

the maximum number of layers in the CNN are set. Here, 𝑙 controls

he complexity of the CNN in terms of the computational cost and per-

ormance. Although a larger number of layers in the CNN does not nec-

ssarily mean better performance, larger CNNs are usually capable of

odelling more complex patterns. This, however, results in higher com-

utational cost both in the training and classification phase. Therefore,

 trade-off between the performance and computational cost should be

erformed. Based on our computational budget, we set 𝑙 = 8 in this pa-

er, that is the maximum number of convolutional, pooling and fully

onnected layers is be 8. 

The population is initialized in step 1 of the algorithm, where 𝑛 in-

ividuals 𝑋 

0 
𝑖 
, 𝑖 = 1 … 𝑛 are randomly generated. Each individual repre-

ents a CNN architecture. First, the number of layers in the individual is

et to a random number between 2 and 𝑙. The minimum number of lay-

rs is 2 because the smallest CNN consists of a convolutional layer and a

ully connected layer. By initialising individuals with different numbers

f layers, the optimization process explores the space of the number

f CNN layers. When the number of layers for an individual is deter-

ined, a convolutional operator is placed at the first layer and a fully

onnected layer is placed at the tail. For the layers between these two,

ither a pooling or convolutional operator is placed with a probability

f 0.5. 

In step 1, also the numerical parameters of the pooling and convo-

utional operators, presented in Table 1 , are initialized at random. The

volutionary process of the proposed algorithm optimizes these values.

o reduce the size of the search space, we use the same parameter sets

or all convolutional layers. The connection weights are randomly ini-

ialized and then optimized within the training phase via GD. While evo-

utionary algorithms could also be used to optimize the weights, we do

ot expect them to perform well due to the large number of weights. The

nitial weights greatly affect the optimization process in gradient descent

lgorithms as this algorithm is prone to getting stuck in local optima.

herefore, the mean and standard deviation of the Gaussian distribu-

ion for random weight initialization are optimized optimize through

he evolutionary process. After the population is initialized, the ‘while’

oop in step two of the algorithm runs the evolutionary algorithm un-

il the termination condition is met. In this paper we set the maximum

umber of generations as the termination condition. 

Step 3 evaluates the individuals in the population. Every time the

tness function is called, the entire dataset is partitioned randomly into

rain and validation data. The evaluation is performed by generating

 CNN with the architecture encoded in the individual, training it (via

D) on the training data and testing on the validation data. The fitness

f an architecture is defined as the average of TPR, PPV, TNR and ACC

easures for the three classes of COVID-19, asymptomatic and healthy

 Equations 3, 4, 5 and 6 ) on the validation data. These measures have

een used as the fitness to make sure the optimization process considers

ll metrics. We also considered using the number of correctly classified

ases as the fitness. However, because the data are imbalanced, such

riterion tends to classify most of the cases into the healthy class. An

verage over these metrics helps to manage the issue. Note that here

he CNN is trained and evaluated on different datasets (training and

alidation sets) to avoid contamination. It is important to evaluate an

rchitecture on a different dataset than the training dataset to avoid

verfitting of the architecture on the training data. 

In step 4, the parent individuals are selected using tournament selec-

ion. The crossover operator is applied in step 5 to generate offspring.

igure 2 presents the way crossover is applied to the individuals. Since

he individual CNNs in this representation can have different sizes, the

rossover operator needs to take this into account. In the proposed

ethod, a random crossover point in each of the individuals is chosen,

nd the offspring is created by inheriting one part from one parent and

he other from another parent. The resulting offspring can have a size

maller or larger than its parents. This allows the evolutionary process
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Figure 2. The crossover operator for the CNN architecture optimization. 
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t  
o also optimize the number of layers. Because the maximum number

f layers is 𝑙, if an offspring with the number of layers greater than this

imit is generated, some of the operators are selected and removed ran-

omly to satisfy the size limit. 

In step 6 of the algorithm the mutation operator is applied. We devise

hree types of mutations in this paper as follows. 

• An operator is chosen at random and its type is swapped (from to

convolutional to pooling and vice versa). 

• A pooling and a convolutional operator are chosen at random and

their position is swapped. 

• A layer is randomly inserted in or removed from the architecture.

This mutation changes the number of layers in the architecture per-

forming the search to find the optimal number of layers. 

These mutation operators explore to find the best number of opera-

ors and their ordering within a CNN. In order to optimize the numerical

arameters of the operators in Table 1 , these parameters are are coded

s a vector of numbers, where a single point crossover operator is used.

he mutation is defined as randomly selecting a number in the vector

nd changing it to a random value. 

.3. Diagnosing COVID-19 via cough signals 

Around 60% of COVID-19 cases show dry cough symptom [45] . Dry

ough is a type of cough which is dry with no sputum or mucus [46] . In a

ry cough, three phases is observed: the initial opening burst, the noisy

irflow and the glottal closure [47] . The first phase is characterized by

ore energy at high frequencies, while in phase 2 less energy is observed

t higher frequencies [48] . Wet cough on the other hand, is caused by

nflammation and secretion in the lower airways, which sometimes can

e triggered by upper respiratory inflammation. For wet coughs, more

nergy is presented in phase two at higher frequencies [48] . Differences

etween coughs of patients with COVID-19 infection and those of other

atients can be used to diagnose the disease via cough signals. 

.3.1. Feature extraction techniques 

In the literature, a variety of features have been used to analyse

he signals and to identify COVID-19 cases. In some works, the sta-

istical properties of the cough signals are used as features. These in-

lude Log energy, Zero crossing rate, Variance, Skewness, Kurtosis [49] ,

ntropy, Formant frequencies, and Fundamental frequency [21] . Some

ork use frequency information of the signals to extract features includ-

ng Mel spectrogram [17] , short-term magnitude spectrograms [13] ,

TFT, MFB, MFCC [50] , and non-negative matrix factorisation

NMF) [51] . 

While using statistical features of the signals in the time-domain

rove useful for many applications, there are important information

n the frequency domain that can be exploited. In this respect, many

athematical transforms are used to extract frequency features from sig-

als. The Fourier transform, which is widely used in many applications,

dentifies the frequency components of a signal. The Fourier transform

ells what frequency components exist in a signal, but it does not pro-

ide time-frequency information. Short-term fourier transform (STFT)

s designed to provide time-frequency information. The method works
203 
y segmenting the input signal into shorter pieces of shorter length

nd performing Fourier transform on each piece. This transform uses

 fixed-size time window, therefore the time-frequency resolution is not

lways adequate, especially when the signal contains short bursts. The

avelet transform has been proposed to mitigate this by extracting the

ime-frequency information via variable-sized window. This property is

imilar to the STFT, with the advantage that it provides a more accu-

ate representation for nonstationary signals with discontinuities, like

ough signals. Selecting the optimal mother wavelet is critical for this

ethod [52] . The Hilbert-Huang Transform (HHT) has been proposed

or this purpose since it is suitable for the analysis of non-linear and

on-stationary signals [53] . The HHT consists of two steps, the empir-

cal mode decomposition (EMD) and Hilbert transform. HHT does not

uffer from the uncertainty principle and it can provide high time and

requency resolutions at the same time. 

The Mel Frequency Cepstral Coefficients (MFCC) are spectral prop-

rties of a signal that are extracted via a frequency transform of the

og spectrum. MFCCs are designed in a way to have similar frequency

esolution to that of human ear [54] ; therefore, they are capable of rep-

esenting the non-linear response of human auditory system to sound

ignals. This makes these coefficients successful in the recognition of

udio signals. 

While these mathematical transforms are useful tools to extract fea-

ures from the signals, automatic feature extraction methods can be em-

loyed. Among the most successful automatic feature extraction meth-

ds are the CNNs. The output of many mathematical transforms like

avelet or HHT on one dimensional signals (like sound signals) are two

imensional signals, similar to images (and often visualized as such).

hese two dimensional signals contain valuable information about the

roperties of the signals. In this sense, CNNs can be used to automati-

ally extract features from these images. 

All these feature extraction methods are useful in finding good fea-

ures for the classification of cough signals. Here, we propose taking the

dvantage of all these tools in a single model to improve performance

n the classification task. 

.3.2. The proposed ensemble learning algorithm 

We propose in this paper an algorithm which is an ensemble of a

umber of base learner algorithms. Each base learner is trained based

n a distinct set of features, extracted via different algorithms. There-

ore, using different sets of features for each base learner provides the

equired diversity among the learning algorithms. Figure 3 shows the

tructure of the proposed ensemble learning algorithm. In the following

e describe the 9 base learners used in this paper, with their correspond-

ng feature extraction methods. 

The first base learner uses OpenSMILE (Open source Speech and Mu-

ic Interpretation by Large-space Extraction) [55] to extract features

rom the raw cough signal. The software extracts 384 features including

ignal energy, Bark-spectra, Octave-spectra, PLP-CC, Pitch, Formants,

PC, Line Spectral Pairs, Spectral Shape description, etc. The features

xtracted by this software have been successfully used to analyse human

oice signals [2–4] . To classify the cough signals via the OpenSMILLE

eatures we used the matlab Support Vector Machine (SVM) implemen-

ation. 

The second base learner in the ensemble performs Fourier transform

n the cough signal and extracts the statistical features of the result-

ng signal. The statistical features used in this paper include the mini-

um, maximum, mean, median and the standard deviation of the first

0 Fourier paramters. These features have been widely used in the lit-

rature [56-57] . 

The third base learner uses the wavelet transform on each of the

ough signals and extracts wavelet features, 𝑓 𝑐 which are calculated

rom the feature matrix 𝐹 𝑀 

. These features have shown to provide

romising results for cough signal classification [58] . 

The fourth base learner performs HH transforms on the signal and ex-

racts statistical features. The statistical features include mean, entropy
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Figure 3. The structure of the proposed ensemble learning algorithm. 

Figure 4. The Shapely values for a particular data record with a prediction of 

0.62. The horizontal axis is the OpenSmile features and the vertical axis is the 

feature value contribution. 
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rror, entropy estimation, histogram lower, histogram upper, RMS, kur-

osis and skewness. 

The fifth base learner is a 1-dimensional CNN which processes the

ough signal and automatically extracts features. Usually, in order to use

NNs for 1D signals, the signal is converted from 1D to 2D and then the

esulting signal is processed [59-60] . However, it has been shown that

mploying 1D CNNs can provide better outcome for 1D signals [61] .

 detailed description of 1D CNNs and their applications can be found

62] . 

The sixth base learner in the ensemble uses STFT to convert the

ough signal into frequency domain. The output of STFT is a 2D sig-

al that contains time-frequency information about the signal. In this

aper we treat the 2D signal as an image and use CNNs to automatically

xtract features and perform classification. Similarly, the 7th, 8th and

th base learners use wavelet, HHT and MFCC transforms to produce the

D images. These images are then processed via CNNs to automatically

xtract features for identification of coughs of COVID-19 patients. 

As presented in Figure 3 , the proposed ensemble learning algorithm

ses different sets of feature extraction and feeds them to different clas-
204 
ifier algorithms. For the CNN algorithms, are used to perform the clas-

ification at the tail of the CNNs. The connection weights of these fully

onnected layers are optimized via the gradient-based learning algo-

ithm which is described later in the paper. For the statistical features,

VM is used to classify the data. 

In the proposed ensemble algorithm, a variety of features are col-

ected via different feature extraction methods. One way of using all

hese features is to concatenate all these feature vectors into a single

ector and feed them into a single learning algorithm. Here, we propose

n approach which consists of a number of base learners where each

earner is trained based on one feature extraction method. There are

everal advantages in using such an approach. (1) Using a large number

f features for a single learning algorithm usually results in suboptimal

erformance as the problem becomes too complex for the learning al-

orithm to manage (the curse of dimensionality). In this condition, a

eature selection mechanism should be adopted to reduce the feature

pace. In the proposed method, each base learner is trained to classify

he cases based on a smaller number of features. (2) Ensemble learn-

ng algorithms require diversity to reach improved performance [63] .

sing different sets of features for each base learner provides the diver-

ity which allows us to use the ensemble approach. (3) Because each

f the learning algorithms can be trained and tested independently and

n parallel, the proposed paradigm can be implemented in a distributed

cheme. (4) In the proposed approach, the base learners are architec-

urally designed and trained via distinct set of features. This way, each

ase learner is tuned and adjusted to classify cases based on a particular

eature set which results in having more specialized base learners. For

nstance, one learning algorithm is trained to discover the patterns in

he wavelet coefficient domain. This base learner, is thus not required to

ecognize the patterns of other transformation signals like MFCC. This

pecifically is an advantage when CNNs are used to extract features.

or example, features extracted from the wavelet transform are charac-

eristically different from the features extracted from MFCC, but CNNs

epend on convolution operators being uniformly applied over the in-

ut feature space. Using the same CNN to extract features from all the

eature sets would therefore not be expected to yield good, as the charac-

eristics of the features are distinct for each transform function and it is

nlikely that a convolutional operator can be found that is optimal for all

f them. Therefore, having different CNNs for different transform func-

ions offers improved performance. (5) Because in the proposed method

he feature space is segmented into smaller pieces, each base learner

eeds to identify the patterns in a smaller feature space. Therefore, the

raining process in each of the base learners is performed in a smaller

earch space with smaller number of local optima, resulting in a better

hance of the algorithm in finding superior local optima. 

.3.3. Memetic training of CNNs 

We propose a memetic algorithm to train the CNNs for diagnosing

OVID-19 via cough signals. Memetic algorithms are a group of algo-

ithms that use local search algorithms in evolutionary algorithms to

mprove the performance by managing premature convergence [64] .

radient Descent (GD) algorithms are usually used for training CNNs

ue to their comparably fast convergence on this type of problem. But

ince GD algorithms perform local search, they suffer from the problem

f getting stuck in local optima. Training CNNs involves the optimiza-

ion of a considerably large number of learning parameters which in-

lude the connection weights, filter values, etc. For such a problem with

he huge fitness landscape, there is a high probability that such local

ptima prevent GD algorithms from finding the global optimum. This

aper proposes a memetic algorithm to train CNNs which is presented

n Algorithm 2 . Memetic algorithms are a mixture of local search and

volutionary algorithms to combine the advantage of both paradigms.

he proposed memetic algorithm in this paper is a mixture of GD and an

volutionary algorithm. The GD algorithm performs the search to find a

ocal optimum and the evolutionary process performs global search by

erforming operations on the local optima found by the GD algorithm. 
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Algorithm 2 The proposed memetic training algorithm. 

begin 

set the parameters m , 𝛼, N and n 

𝜏 = 0 
1. initialize N sub-populations Y j 

0 , j = 1 . . . N 
2. while not termination condition do 

begin 

3. for j = 1 . . . N 
begin 

4. for all individuals in Y j 
𝜏

begin 

5. partition the training data T into T t and T v 
6. train the individual with T t via GD 

7. evaluates the individual with T v 
end 

8. select the parent solutions from Y j 
𝜏

9. generate offffsprings via crossover and store in O j 
𝜏

10. perform mutation on O j 
𝜏 with probability of m 

11. perform selection on Y j 
𝜏 ∪ O j 

𝜏 and store in Y j 
𝜏+ 1 

end 

12. perform migration with probability of 𝛼

𝜏 = 𝜏 + 1 
end 

13. return the best solution in Y 𝜏
end 
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Algorithm 3 Weight optimization fitness function. 

input the individual x 

begin 

1. partition the training data T into 4 equal 

partitions T j , j = 1 . . . 4 
2. S = 0 
3. for j = 1 → 4 do 

begin 

4. train the base learners with T − T j 
5. test the base learners with T j 
6. use the weights in x to aggregate the base learners 

and store the number of correctly classifified cases in s 

7. S = S + s 
end 

8. return S 

end 
Each individual in the evolutionary optimization process is a set

f the learning parameters of the CNNs which include the connection

eights and filters. We devise a multi-population scheme in the pro-

osed algorithm to increase diversity in the population and improve the

erformance of the algorithm. The population is divided into 𝑁 sub-

opulations of equal size. This scheme allows each sub-population to

earch through the fitness landscape independently which helps the al-

orithm to explore wider area in the search space. This results in di-

ersity among the individuals helping the algorithm to find better local

ptima. 

In the proposed memetic algorithm, GD is used as the local search

lgorithm to train individual CNNs. The next step of the evolutionary

rocess requires to assess the fitness of the individuals. The final training

rror of the CNN could be used as the fitness; however, this would likely

esult in overfitting to the training data. To avoid this, we partition the

raining data into 𝑇 𝑡 (train dataset) and 𝑇 𝑣 (validation dataset) in step

 of the algorithm. CNNs are first trained using 𝑇 𝑡 , then 𝑇 𝑣 is used to

valuate the fitness of the individuals, that is, the learning parameters

f the trained CNN, which are the connection weights and filters. The

artitioning is performed by randomly inserting 3/4 of the training data

nto 𝑇 𝑡 and 1/4 of them into 𝑇 𝑣 . 

The individuals in the population are trained in step 6. In order to

rain an individual (the learning parameters of a CNN), the GD algorithm

tarts from the learning parameters of the individual and performs de-

cent until it reaches a local optimum. This improves the fitness of the

ndividual via the GD algorithm. Note that in the first iteration of the

volutionary algorithm ( 𝜏 = 0 ), the individuals are initialized at random,

o the GD algorithm starts from a random point in the fitness landscape.

owever, as the evolutionary algorithm progresses, the individuals that

re the result of the crossover and mutation operators are further opti-

ized via the GD algorithm. In other words, the individuals generated

ia crossover and mutation are used as the starting point for the GD

ptimization process. 

The individuals are evaluated in step 7 of the algorithm. As men-

ioned before, the partition 𝑇 𝑡 is used to train the individuals and 𝑇 𝑣 is

sed to evaluate them. Since the data partitions 𝑇 𝑡 and 𝑇 𝑣 are generated

y random splitting for each individual, each CNN is trained and evalu-

ted based on different sets of data, leading to improved exploration of

he search space and avoiding overfitting. 

The parents are selected in step 8 of the algorithm. In step 9 of the

lgorithm the crossover operator is applied to the selected individuals

o generate the new set of offsprings. Here, the crossover is only applied
205 
o the individuals that are in the same sub-population (this is performed

ia the for loop in step 3). The individuals are the set of the learning

arameters of the CNNs. The learning parameters are the connection

eights which are a number of matrices. The crossover in this paper is

efined as a single point crossover on the matrices. In CNNs, the filters

re also matrices and a similar paradigm is used for the crossover. The

utation operator is applied in step 10 of the algorithm which is defined

s changing randomly 5% of the values in the matrices. 

When the new population of individuals is generated via the

rossover and mutation operators, the GD algorithm is applied to the

ewly generated individuals. By changing the individuals, the crossover

nd mutation operators move the individuals away from the local op-

ima they have reached via the GD algorithm in previous steps. This

elps the GD algorithm to escape from the local optima and perform

gain a search process to search other regions in the search space. The

utation operator increases the diversity in the population by randomly

hanging the individuals. The crossover operator performs a global

earch in the landscape by combining two individuals that have already

eached the local optima. Performing the crossover between two local

ptima generates a solution that inherits properties from both local op-

ima. When GD is performed on this new individual, a new local op-

imum is reached that, in expectation, is better than the previous lo-

al optima. A more in-depth analysis of this process is available else-

here [65] . 

We have devised a migration operator in step 12 of the algorithm

hich randomly selects two individuals from two sub-populations and

waps them. 

.3.4. Aggregation in the ensemble scheme 

The last layer in the algorithm is the ensemble layer, in which a

eighted voting paradigm is performed among the base learners. Part

f the learning process is therefore to find optimal weights for each

he base learners. In the proposed algorithm, first the base learners are

rained via the training data. Then, the output of the ensemble scheme

s calculated as, 

 = 

∑𝑘 

𝑖 =1 𝑤 𝑖 𝑐 𝑖 
∑𝑘 

𝑖 =1 𝑤 𝑖 

, (1)

here 𝐶 is the aggregated output of the base learners, 𝑐 𝑖 is the predicted

lass of the 𝑖 -th base learner, and 𝑘 is the number of base learners. In this

aper, the weight values of the base learners, 𝑤 𝑖 are optimized via a sim-

le Genetic Algorithm (GA). In the initialization step of the evolutionary

rocess, the individuals are generated. Each individual is a vector of real

alues and is initialized by setting to random numbers between 0 and

, 𝑤 𝑖 = 𝑅 (0 , 1) , where 𝑖 = 1 , … , 𝑐 and 𝑅 ( ., . ) is a uniform random number

enerator. The fitness of the individuals is measured based on the accu-

acy of the prediction of the ensemble learning algorithm. Algorithm 3

resents the way the fitness of the individuals is measured. 
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Figure 5. The spectrogram representation of the cough signal after the short 

term Fourier transform is applied. 
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To measure the fitness of the individuals, the voting weights of the

ase learners suggested by the individual 𝑥 is used to classify the data

nd the accuracy of the classification process is returned as the fitness.

o measure the accuracy of the classification, the training data is par-

itioned into found equal size partitions 𝑇 𝑗 , and in a four fold scheme,

hree quarters of the training data are used to train the base learners and

ne quarter is used as validation dataset to measure the accuracy of the

lassification. Note that the training and evaluation in the steps 4 and

 of the algorithms do not need to be performed every time the fitness

unction is called. The base learners are trained and tested in the four-

old scheme. If the partitioning is performed the same way every time

he fitness function is measured, the output of the base learners for each

f the data records in the validation data set can be stored in a look-up

able. Then, to measure the fitness of the individual 𝑥 , the output of the

ase-learners is found via the table. 

In the ensemble scheme, the weights of the voting system should be

ositive numbers. Thus, in the optimization process it is made sure that

he weights do not become negative numbers. 

The proposed algorithm improves the performance in two aspects.

irst, it takes advantage of a wide range of features from different

ransformation functions. Each of these feature extraction methods, like

avelet or MFCC, have their own advantage that can benefit the clas-

ification process. Second, because the output of the base learners is

ound via a voting scheme (the weights of which are optimized via the

volutionary paradigm), if any set of features, (for example OpenSMILE

eatures) do not offer good performance and do not contribute in the

lassification process, the optimization process of the voting weights

utomatically reduces the weight of the base learner. This performs as

n automatic feature set selection scheme giving higher weight to the

ore discriminating set of features. 

. Results 

.1. Interpretability 

While there has been progress in designing accurate decision making

lgorithms, there has emerged the idea among the research community

hat the prediction accuracy is not the only objective and the intelligent

lgorithms should be designed in a way that it can be explained why and

ow a particular decision has been made. This is particularly relevant

n medical applications, where a decision is made, based on a feature

ector, about the health condition of a patient. If the learning algorithm

eaches the decision that a particular case is healthy, it is very benefi-

ial to verify the output and check if it is associated with the clinical

eatures that are relevant to the disease, rather than some accidental

orrelation between irrelevant features and the target [66] . Conversely,

f there is a case that has been identified as unhealthy by the machine

earning, an explanation of why such decision has been made can be of

elp as this provides insights on what features have caused the disease

nd what therapeutic actions can be taken to reduce symptoms or to

ure the condition. 

In designing interpretable machine learning algorithms, it is assumed

hat the input features are interpretable by the receiver [67] . Despite all

hese, it is sometimes difficult to create interpretable machine learn-

ng algorithms, when the features are not clearly understandable. For

xample, some features like “blood pressure ” and “blood sugar level ”

re easy to understand by expert. However, in many applications, there

ay be some features that are extracted from some transformations on

ome signals which are not trivial for the experts to interpret. Many of

he features used in this paper belong to this group. For example, some

eatures extracted from the wavelet transform of a signal are not much

nterpretable by a doctor of medicine. 

Deep neural network algorithms can be presented as a number of

unctions as 

( 𝑥 ) = 𝑓 ◦… ◦𝑓 ( 𝑥 ) (2)
𝐿 1 

206 
here each layer applies a function on the output of the previous layer.

lthough having a large number of layers gives a high prediction power

o the algorithms, the complexity of these systems adds to the complica-

ions of making the system interpretable. First, in these systems, some

eurons are only activated for some data records, while some other neu-

ons are activated for others. Such behavior causes an amalgamation

f local and global effects which in turn makes finding the root point

hat expands to the prediction a hard task [67] . Second, the depth of

hese networks causes a phenomenon known as “shattered gradient ”,

here the gradient resembles white noise [68] . It has been shown that

n worst case, the discontinuity of the gradient grows exponentially with

he number of layers [69] . Third, the challenge arises when trying to find

 root point for explanation, which is close to the data but not adversar-

al examples [70] . 

Although these challenges make the task of designing an inter-

retable CNN hard, we try our best in this paper to add interpretability

o the proposed algorithm. 

The proposed algorithm is an ensemble learning algorithm so each

f the base learners should be interpreted individually. Then, after the

ndividual ones are interpreted, the aggregation step in the ensemble is

nterpreted. 

We start by discussing the interpretability of the first base learner

hich uses the features extracted via OpenSmile and the SVM algorithm

o classify the data. It has been shown in the literature that SVM can

e interpreted [71] . While the methods proposed specifically for SVMs

an be used to interpret the algorithms, in this paper we use Shapley

ethod [72] to interpret the algorithm. Figure 5 shows the Shapely val-

es for a particular data record. As the data in this figure suggest, the

eature MFCC1 contributes around 0.11 to the prediction for this data

ecord compared to the average prediction for the whole dataset. 

In [67] , a method is proposed to make CNNs interpretable. In this

ethod, the regions in the figure that contain the features responsible

or the decision are detected and presented. Figure 5 shows the regions

n the spectogram representation of the short Fourier transform of the

ough signal that contain these features for a particular data record. 

The experiments so far present how different base-learners in the

nsemble can be interpreted. The aggregation step in the ensemble, as

resented in Algorithm 1 , generates a linear combination of the output

f the base-learners. Such learning algorithms are easily intperpretable.

ore details of how these can be interpreted can be found in [72] . 
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Table 2 The best architecture for each of the feature extraction CNNs 

Architecture 

Transform Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 

Conv. Pool. Conv. Conv. Pool. 

STFT FS = 5 KS = 3 FS = 5 FS = 5 KS = 6 
NF = 3 PT = M NF = 3 NF = 4 PT = M 

SS = 3 SS = 3 SS = 6 SS = 3 SS = 6 
Conv. Conv. Pool. Conv. Pool. Pool. 

Wavelet FS = 3 FS = 5 KS = 5 FS = 4 KS = 6 KS = 6 
NF = 3 NF = 2 PT = M NF = 4 PT = M PT = M 

SS = 3 SS = 3 SS = 5 SS = 3 SS = 5 SS = 5 
Conv. Conv. Pool. Pool. 

HHT FS = 5 FS = 3 KS = 6 KS = 5 
NF = 4 NF = 3 PT = M PT = A 
SS = 4 SS = 3 SS = 3 SS = 6 
Conv. Pool. Conv. Pool. Pool. Conv. 

MFCC FS = 6 KS = 3 FS = 5 KS = 5 KS = 3 FS = 5 
NF = 2 PT = A NF = 5 PT = A PT = A NF = 5 
SS = 6 SS = 6 SS = 6 SS = 3 SS = 3 SS = 4 

Conv: convolutional; Pool: pooling; FS: filter size; NF: number of filters; SS: stride 

size; KS: kernel size; PT: pooling type. 
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Figure 6. The optimization progress of the evolutionary CNN architecture de- 

sign. 
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.2. Experimental results 

The experimental studies in this paper start with the optimization

f CNN architecture for each feature set via Algorithm 1 . In these ex-

eriments, the population size is set to 𝑛 = 20 , the maximum number of

ayers is set to 𝑙 = 9 , the mutation rate is set to 0.1 and a maximum num-

er of 1000 generations is set as the termination condition. The CNNs

ave a fixed number of one input layer and two fully connected classifi-

ation layers. The number and ordering of the convolutional and pooling

perators as well as the parameters filter size, number of filters, stride

ize, kernel size and pooling type are optimized via the evolutionary

aradigm. In all experiments, the signals are converted into 256 × 256

mages. For each set of features, the CNN architecture is optimized in-

ependently. 

To evaluate the performance of the learning algorithms three met-

ics are used in this paper which include the true positive rate (TPR, also

nown as sensitivity), the positive predictive rate (PPR, also known as

recision), true negative rate (TNR, also known as specifity) and accu-

acy (ACC). These measures are defined as follows. 

PR = 

TP 

TP + FN 

(3)

PV = 

TP 

TP + FP 
(4)

NR = 

TN 

TN + FP 
(5)

CC = 

TP + TN 

TP + TN + FP + FN 

(6)

Table 2 reports the optimized CNN parameters for each 2D feature

et. For example, the best CNN architecture for extracting features for

TFT consists of 5 layers of convolutional and pooling operators with

 fully connected layers at the tail. The first layer is a convolutional

perator with the parameters filter size equal to 5, number of filters

qual to 3 and stride size equal to 3. All experiments in this paper use

he architectures reported in Table 2 . 

Figure 6 shows the evolutionary progress of the evolutionary opti-

ization of the CNN architecture. The graph shows the fitness of the

est solution at each iteration out of a population of 20. The fitness is

efined as percentage of the data records in 𝑇 𝑡𝑒𝑠𝑡 that are correctly clas-

ified. CNNs are trained with GD. The optimization process starts from

 random CNN architecture and performs the evolutionary process. The

erformance of a random architecture is shown at iteration zero, which

.g. in the case of STFT yield 66.49% correct classification. As the archi-

ecture is optimized, the performance improves to 70.67%. Therefore,
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ptimizing the architecture of the CNN resulted in a performance gain

f roughly 4% in this case. 

In this paper, we compare the performance of the proposed algo-

ithm with five established algorithms: SVM, ANN, SAE, DBN and BLS.

he features used for these algorithms were the OpenSMILE, Fourier,

avelet and HHT statistical features. The libSVM [73] algorithm was

sed for SVM and the BLS [74] was used for the BLS algorithms. The

eepLearn toolbox [75] was used to implement ANN, SAE and DBN. In

rder to implement the CNN algorithms, the respective MATLAB tool-

ox was employed. We used a polynomial kernel for SVM; for ANN 4

ayers with 20 neurons at each layer were used. The number of feature

odes and the number of enhancement nodes in BLS are set to 100 and

000 respectively. All other parameters in the algorithms used the de-

ault parameters of the employed software. 

As explained in Section 2.1 , the architecture of CNNs is optimized

n this paper via an evolutionary process based on the entire dateset.

o evaluate the algorithms, a four-fold scheme is used to avoid contam-

nation of train with the test data. Table 3 presents the performance

f the CNN algorithms in terms of the metrics when a random architec-

ure is used, versus the optimized architecture via the proposed method.

he data in these tables are averaged over 30 independent runs. As the

ata suggest, the proposed architecture optimization scheme improves

he performance of the CNNs on all the experiments and metrics. A t -

est analysis is also presented in this paper which suggests improvement

ith significance. 

The idea in optimizing the architecture of CNNs in this paper is that

here is no architecture that suits all the existing problems and for each

roblem there is a particular architecture that works better. In order

o show how specifically design an architecture for a problem can im-

rove the performance, Table 4 shows the performance of a random

rchitecture (random here means an architecture made via step 1 of the

lgorithm 1 ), the optimized architecture and some of the well-known

NNs in the literature. The performance is defined as the percentage of

he cases that are correctly classified by the algorithm. The results are

or four transform functions, STFT, Wavelet, HHT and MFCC. 

In order to compare the optimized architecture with the state-of-the-

rt architecture, we use CAE-2 [76] , TIRBM [77] , PGBM+DN-1 [77] ,

catNet-2 [78] , RandNet-2 [79] , LDANet-2 [79] , SVM+RBF [80] ,

VM+Poly [80] , NNet [80] , SAAA-3 [80] , SqweezNet (SQNet) [81] ,

obileNetV2 [82] and DBN-3 [80] . Clearly, all these architectures eas-

ly outperform a random architecture. However, the proposed optimiza-

ion technique builds an architecture that performs better than the exist-

ng algorithms. This is because all these architectures are some generic

rchitectures that are not particularly designed for this problem. For

xample, because of their specific properties, when processing wavelet
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Table 3 Different algorithms in terms of performance, accuracy, true positive rate, positive predictive rate and true negative rate (%) 

Healthy COVID-19 Symptomatic 

Algorithms Performance ACC TPR PPV TNR ACC TPR PPV TNR ACC TPR PPV TNR 

STFT Rnd 63.31 67.56 63.36 91.96 81.55 80.19 62.86 22.54 81.66 78.86 63.27 38.34 81.67 

STFT Opt. 66.85 70.67 66.85 93.07 83.42 82.13 67.24 25.59 83.40 80.89 66.65 42.04 83.45 

P -value 2.35e-3 2.8e-4 8.1e-3 2.8e-4 4.0e-3 7.8e-4 4.9e-4 1.5e-5 8.1e-3 1.5e-4 6.1e-3 8.2e-5 1.3e-4 

Wavelet Rnd 59.41 64.06 59.28 90.80 79.99 77.99 59.55 19.83 79.55 76.75 59.93 34.80 79.78 

Wavelet Opt. 61.89 66.24 61.86 91.50 80.85 79.50 61.63 21.61 81.01 78.04 62.18 36.95 80.90 

P -value 3.42e-2 8.3e-3 1.4e-4 7.4e-5 2.2e-3 9.1e-4 3.6e-5 1.2e-3 6.0e-3 5.0e-5 6.7e-4 1.1e-5 3.7e-4 

HHT Rnd 59.57 64.21 59.52 90.77 79.84 78.19 60.22 20.13 79.72 76.71 59.42 34.66 79.83 

HHT Opt. 61.54 65.94 61.53 91.37 80.64 79.28 61.72 21.41 80.77 77.85 61.46 36.56 80.80 

P -value 2.21e-3 2.5e-4 1.3e-3 3.4e-5 2.2e-3 1.2e-4 2.8e-4 1.1e-4 3.9e-5 1.3e-5 2.0e-3 4.0e-4 4.3e-5 

MFCC Rnd 58.83 63.55 58.71 90.58 79.66 77.80 59.14 19.59 79.38 76.30 59.21 34.08 79.37 

MFCC Opt. 60.53 65.12 60.53 91.14 80.39 78.63 60.07 20.48 80.21 77.29 60.70 35.67 80.28 

P -value 4.21e-2 7.6e-4 2.8e-4 4.2e-2 2.2e-2 1.1e-5 1.3e-1 1.0e-4 4.0e-4 3.6e-4 1.0e-2 1.2e-4 8.0e-5 

Table 4 The performance of different architectures (%) 

Algorithm STFT Wavelet HHT MFCC 

Random 63.31 59.41 59.57 58.83 

Optimized 66.85 61.89 61.54 60.53 

NNet 66.63 61.03 61.50 59.94 

DBN-3 65.92 61.60 60.86 59.93 

CAE-2 66.05 61.78 61.47 59.47 

TIRBM 65.50 60.93 61.47 59.46 

PGBM 64.65 60.91 60.36 59.48 

ScatNet-2 65.45 60.13 61.33 59.93 

RandNet-2 65.51 60.51 60.69 59.27 

LDANet-2 65.56 61.24 61.52 59.52 

SQNet 66.54 61.79 60.34 60.05 

MBNet-2 64.98 61.68 61.18 59.89 

GPNet 64.24 60.91 61.04 60.23 
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ransform images, it is better to design a CNN architecture that is specif-

cally suitable for this type of images. Table II in supplementary materi-

ls presents more details experimental analysis on the data in terms of

ifferent metrics. 

Table 5 summarizes the experiments on different algorithms. For

he CNN algorithms, the best architectures presented in Table 2 are

sed. The data are averaged over 30 independent runs. The first five

lgorithms are the established algorithms that we use here as a bench-

ark to compare our results against. Algorithms 6 to 15 correspond to

he base learners. The last algorithm, EEC is the proposed Evolution-

ry Ensemble Classification algorithm. The first column represents the

erformance of each algorithm which is defined as the percentage of

he cases that are correctly classified. The data for SFTF CNN, Wavelet

NN, HHT CNN AND MFCC CNN are for the experiments in which the

roposed memetic learning scheme is used to train the CNNs. A com-

arison between the data in Tables 3 and 5 shows that the memetic

earning improve the performance of these algorithms. EEC consistently

chieves the best performance among all algorithms. It outperforms

he base-learners because the ensemble scheme optimizes the weights

hat combine the output of the base-learners to achieve better perfor-

ance than the base-learners individually. Among the established al-

orithms, the best performance is achieved by SVM, followed by ANN

lgorithm. Among the CNN algorithms it is STFT which achieves the best

erformance. 

In this table, the PPV value for COVID-19 cases is smaller than other

etrics. This is because a relatively smaller proportion (around 8%) of

ata belong to the COVID-19 cases. As per Equation 4 , when the number

f cases for a particular class is smaller than the other classes, its TP will

e small, while its FP can be relatively large as there are more cases of

he other classes to be misclassified to belong to this class. This is why

PV is relatively small for the COVID-19 and symptomatic cases, and

arger for healthy cases. 

Table 6 presents an analysis of the results in Table 5 using the

ruskal-Wallis [83] test. In this table, ‘SS’ is the sum of squares of each
208 
ource, ‘df’ is the degree of freedom associated with each source, ‘MS’

s the mean squares (the ration SS/df) and ‘Chi-square’ is the ratio of

ean squares. The results in Table 6 confirm that the null hypothesis

hat the samples are taken from the same mean can be rejected with a

igh probability significance level. 

More detailed experiments are performed and the results are pre-

ented in Table 7 . 

. Discussion 

An ensemble learning algorithm was proposed in this paper to di-

gnose COVID-19 via cough signals. In this algorithm, a number of

ase learners are trained and aggregated in a weighted voting scheme.

ach base learner is trained based on a particular set of features. The

eights in the voting scheme are optimized via an evolutionary algo-

ithm. The proposed paradigm has the advantage of effectively adjusting

he weights in a way to select the feature sets which are more capable of

orrectly classifying the data. If any of the feature selection techniques

o not provide adequate performance, it is automatically given a small

eight thus it plays a less significant role. 

Because there are many mathematical transforms that have been de-

igned to find frequency information of signals, when it comes to signal

rocessing, there usually exist a large number of feature extraction ap-

roaches. Historically, for a particular application, researchers normally

se a specific feature extraction method to build a learning algorithm.

ach of these feature extraction methods has their own characteristics. 

The proposed algorithm combines the advantages of different fea-

ure extraction methods. It extracts features from the time-domain

ignals and uses a variety of transform functions including wavelet,

ourier, Hilbert-Huang, Walsh, and short-term Fourier. Two approaches

or feature extraction are employed in this paper, first are the statisti-

al features from the signals, and the second is using CNNs to extract

eatures automatically. Because the output of many transform func-

ions is a 2D signal, similar to an image, extracting the properties of

he signals from these images can be successfully performed via CNN

lgorithms. 

There are many generic CNN architectures in the literature that have

een used for a variety of applications. Although these generic CNNs

ave proved successful, there is not a particular architecture that suits

ll the existing problems and the optimal decision is to finely tune the

NN architecture for the problem. This paper proposes an evolutionary

aradigm to optimize the CNN architecture for each of the feature sets.

Traditionally, GD algorithms are used to train CNN algorithms. While

ue to their speed GD algorithms are very successful, these algorithms

re prone to get stuck in local optima. To manage this, we propose a

emetic algorithm that benefits from the speed of GD and the global

earch of evolutionary algorithms. This paradigm improves the chance

f the learning algorithm to reach better local optima. 

There are still some open questions that have not been targeted

n this paper and can be studied in future work. To manage the local
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Table 5 Different algorithms in terms of performance, accuracy, true positive rate, positive predictive rate and true negative rate (%) 

Healthy COVID-19 Symptomatic 

Algorithm Performance ACC TPR PPV TNR ACC TPR PPV TNR ACC TPR PPV TNR 

SAE 61.33 65.81 61.41 91.29 80.47 79.14 61.47 21.23 80.64 77.68 60.77 36.22 80.73 

ANN 68.22 71.88 68.25 93.42 83.99 82.83 67.91 26.61 84.10 81.72 68.23 43.68 84.15 

SVM 69.45 72.96 69.45 93.78 84.65 83.54 69.08 27.80 84.77 82.38 69.58 45.01 84.69 

DBN 66.06 70.05 66.16 92.85 83.03 81.67 66.15 24.82 82.98 80.41 65.55 41.10 83.08 

BLS 67.63 71.34 67.53 93.38 84.04 82.59 67.99 26.31 83.83 81.31 67.89 42.90 83.72 

OpenSMILE 68.20 71.85 68.15 93.49 84.19 82.92 68.36 26.81 84.15 81.61 68.32 43.49 84.01 

Fourier Stat. 68.91 72.48 68.86 93.68 84.51 83.24 69.45 27.45 84.41 82.10 68.85 44.42 84.48 

Wavelet Stat. 65.25 69.27 65.31 92.54 82.46 81.27 65.05 24.14 82.64 79.95 64.99 40.28 82.64 

HHT Stat. 67.60 71.34 67.62 93.27 83.75 82.50 67.77 26.15 83.75 81.35 67.41 42.93 83.86 

1D CNN 62.55 66.90 62.66 91.67 81.02 79.83 61.87 21.98 81.36 78.36 62.30 37.44 81.25 

STFT CNN 70.98 74.34 71.03 94.18 85.38 84.41 70.76 29.40 85.57 83.20 70.81 46.67 85.43 

Wavelet CNN 66.19 70.11 66.19 92.91 83.17 81.70 65.93 24.81 83.04 80.56 66.29 41.44 83.13 

HHT CNN 64.63 68.73 64.70 92.37 82.18 80.81 64.42 23.51 82.20 79.71 64.37 39.80 82.47 

MFCC CNN 63.68 67.85 63.68 92.06 81.71 80.40 63.55 22.90 81.83 79.10 63.68 38.76 81.88 

EEC 73.55 76.54 73.47 94.88 86.80 85.71 73.74 32.06 86.73 84.84 73.85 50.23 86.82 

Table 6 The ANOVA and Kruskal-Wallis test on the data for different classes and measures 

Groups 

ANOVA Kruskal-Wallis test 

Source SS df MS F Prob > F Source SS df MS Chi-sq P > Chi-sq 

ACC Columns 3.37e-01 14 2.41e-02 5.64e + 03 0 Columns 7.50e + 06 14 5.36e + 05 444 7.63e-86 

Healthy Error 

Total 

1.86e-03 

3.39e-01 

435 

449 

4.27e-06 Error 

Total 

8.96e + 04 7.59e + 06 435 

449 

2.06e + 02 

ACC Columns 1.28e-01 14 9.17e-03 9.39e + 02 1.21e-314 Columns 7.29e + 06 14 5.21e + 05 431 3.50e-83 

COVID-19 Error 4.25e-03 435 9.77e-06 Error 3.03e + 05 435 6.96e + 02 

Total 1 33e-01 449 Total 7 59e + 06 449 

ACC Columns 1.46e-01 14 1.04e-02 1.15e + 03 0 Columns 7.32e + 06 14 5.23e + 05 433 1.48e-83 

Sympt. Error 

Total 

3.94e-03 

1 50e-01 

435 

449 

9.06e-06 Error 

Total 

2.73e + 05 7 59e + 06 435 

449 

6.27e + 02 

TPR Columns 4.25e-01 14 3.04e-02 2.51e + 03 0 Columns 7.45e + 06 14 5.32e + 05 441 3.55e-85 

Healthy Error 

Total 

5.25e-03 

4.30e-01 

435 

449 

1.21e-05 Error 

Total 

1.43e + 05 7.59e + 06 435 

449 

3.29e + 02 

TPR Columns 4.66e-01 14 3.33e-02 7.10e + 01 8.46e-103 Columns 5.17e + 06 14 3.69e + 05 306 8.36e-57 

COVID-19 Error 2.04e-01 435 4.69e-04 Error 2.43e + 06 435 5.58e + 03 

Total 6.70e-01 449 Total 7.59e + 06 449 

TPR Columns 4.83e-01 14 3.45e-02 1.61e + 02 7.67e-162 Columns 6.29e + 06 14 4.49e + 05 372 1.15e-70 

Sympt. Error 

Total 

9.34e-02 

5.76e-01 

435 

449 

2.15e-04 Error 

Total 

1.31e + 06 7.59e + 06 435 

449 

3.01e + 03 

PPV Columns 3.85e-02 14 2.75e-03 2.57e + 02 3.51e-200 Columns 6.68e + 06 14 4.77e + 05 395 1.57e-75 

Healthy Error 

Total 

4.65e-03 

4.31e-02 

435 

449 

1.07e-05 Error 

Total 

9.16e + 05 7.59e + 06 435 

449 

2.11e + 03 

PPV Columns 3 44e-01 14 2 46e-02 6 18e + 02 9 09e-277 Columns 7 13e + 06 14 5 09e + 05 422 3 68e-81 

COVID-19 Error 

Total 

1.73e-02 

3.61e-01 

435 

449 

3.97e-05 Error 

Total 

4.65e + 05 7.59e + 06 435 

449 

1.07e + 03 

PPV Columns 5.51e-01 14 3.93e-02 1.10e + 03 0 Columns 7.31e + 06 14 5.22e + 05 432 1.86e-83 

Sympt. Error 

Total 

1.55e-02 

5.66e-01 

435 

449 

3.56e-05 Error 

Total 

2.81e + 05 7.59e + 06 435 

449 

6.46e + 02 

TNR Columns 1.18e-01 14 8.46e-03 1.07e + 02 6.78e-131 Columns 5.72e + 06 14 4.09e + 05 338 1.11e-63 

Healthy Error 

Total 

3.45e-02 

1.53e-01 

435 

449 

7.92e-05 Error 

Total 

1.87e + 06 7.59e + 06 435 

449 

4.30e + 03 

TNR Columns 1.10e-01 14 7.83e-03 6.66e + 02 1.95e-283 Columns 7.21e + 06 14 5.15e + 05 426 3.79e-82 

COVID-19 Error 

Total 

5.12e-03 

1.15e-01 

435 

449 

1.18e-05 Error 

Total 

3.86e + 05 7.59e + 06 435 

449 

8.87e + 02 

TNR Columns 1.06e-01 14 7.59e-03 5.91e + 02 1.20e-272 Columns 7.12e + 06 14 5.08e + 05 421 5.25e-81 

Sympt. Error 

Total 

5.59e-03 

1.12e-01 

435 

449 

1.29e-05 Error 

Total 

4.77e + 05 7.59e + 06 435 

449 

1.10e + 03 

SS is the sum of squares, and df is the degrees of freedom. MS is the mean squared error. F is the ratio of the mean squared errors, Prob > F is the P-value that 

represents the significance of the differences between column means. P > chi-sq indicates the P-value that all the data samples come from the same distribution. It 

is called chi-sq because in Kruskal Wallis test, the p-value measures the significance of the chi-square statistic. 
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ptima problem in the training process of CNNs we proposed the

emetic scheme. However, it is a well-known concept that the design of

ptimization algorithms can be improved when gaining a better under-

tanding of the fitness landscape of the optimization problem [84–86] .

herefore, we believe that studying the fitness landscape of the train-

ng phase of CNNs presents a promising future line of research. Such

nderstanding can help to better understand the structure of the fitness

andscape, help in providing insight into the ways in which the local op-

ima problem can be managed, and increase the chance of finding the

lobal optimum. 
209 
This paper employed a wide range of features, including statistical

nd CNN-extracted features from different transforms on the signal. Fur-

her improvement of the classification performance could be achieved

hrough a smart feature selection scheme that narrows down the large

et of features. This is specifically true for the features extracted via

NNs, as they are found automatically and do not undergo a selec-

ion process. Future research could conduct a feature analysis to find

n improved set of features among the wide range of potential features

hat can be extracted using the rich toolbox provided by signal process-

ng techniques, e.g. by using filter and wrapper techniques. Identifying
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Table 7 Different algorithms in terms of performance, accuracy, true positive rate, positive predictive rate and true negative rate (%) 

Healthy COVID-19 Symptomatic 

Algorithms Performance ACC TPR PPV TNR ACC TPR PPV TNR ACC TPR PPV TNR 

STFT, Random 63.31 67.56 63.36 91.96 81.55 80.19 62.86 22.54 81.66 78.86 63.27 38.34 81.67 

STFT, Optimized 66.85 70.67 66.85 93.07 83.42 82.13 67.24 25.59 83.40 80.89 66.65 42.04 83.45 

Wavelet, Random 59.41 64.06 59.28 90.80 79.99 77.99 59.55 19.83 79.55 76.75 59.93 34.80 79.78 

Wavelet, Optimized 61.89 66.24 61.86 91.50 80.85 79.50 61.63 21.61 81.01 78.04 62.18 36.95 80.90 

HHT, Random 59.57 64.21 59.52 90.77 79.84 78.19 60.22 20.13 79.72 76.71 59.42 34.66 79.83 

HHT, Optimized 61.54 65.94 61.53 91.37 80.64 79.28 61.72 21.41 80.77 77.85 61.46 36.56 80.80 

MFCC, Random 58.83 63.55 58.71 90.58 79.66 77.80 59.14 19.59 79.38 76.30 59.21 34.08 79.37 

MFCC, Optimized 60.53 65.12 60.53 91.14 80.39 78.63 60.07 20.48 80.21 77.29 60.70 35.67 80.28 

STFT, NNet 66.63 70.45 66.56 93.04 83.40 81.97 67.04 25.35 83.24 80.83 66.74 41.95 83.36 

Wavelet, NNet 61.03 65.51 60.99 91.26 80.54 79.07 61.48 21.17 80.56 77.49 61.00 35.99 80.46 

HHT, NNet 61.50 65.94 61.42 91.50 80.99 79.20 61.29 21.26 80.72 77.85 61.98 36.66 80.71 

MFCC, NNet 59.94 64.56 59.91 90.91 80.04 78.32 60.30 20.26 79.85 77.00 59.90 35.13 80.08 

STFT, DBN-3 65.92 69.84 65.88 92.83 83.04 81.58 65.93 24.68 82.91 80.42 66.11 41.18 82.99 

Wavelet, DBN-3 61.60 66.04 61.68 91.36 80.56 79.29 61.35 21.35 80.82 77.85 61.26 36.54 80.84 

HHT, DBN-3 60.86 65.40 60.89 91.21 80.44 78.85 60.92 20.85 80.37 77.46 60.66 35.88 80.48 

MFCC, DBN-3 59.93 64.46 59.78 90.90 80.06 78.49 60.32 20.41 80.03 76.90 60.46 35.09 79.86 

STFT, CAE-2 66.05 70.00 66.07 92.87 83.09 81.69 66.12 24.84 83.01 80.39 65.85 41.10 83.01 

Wavelet, CAE-2 61.78 66.27 61.87 91.53 80.93 79.25 60.51 21.14 80.84 78.03 61.93 36.90 80.93 

HHT, CAE-2 61.47 65.88 61.43 91.40 80.72 79.20 61.69 21.33 80.69 77.84 61.51 36.56 80.78 

MFCC, CAE-2 59.47 64.13 59.41 90.75 79.83 78.11 60.06 20.03 79.64 76.69 59.41 34.63 79.80 

STFT, TIRBM 65.50 69.43 65.40 92.71 82.86 81.43 65.65 24.45 82.77 80.12 65.88 40.67 82.69 

Wavelet, TIRBM 60.93 65.45 60.99 91.17 80.30 78.94 60.86 20.93 80.48 77.46 60.62 35.88 80.49 

HHT, TIRBM 61.47 65.93 61.42 91.50 80.98 79.17 61.94 21.36 80.63 77.82 61.44 36.52 80.77 

MFCC, TIRBM 59.46 64.19 59.65 90.57 79.31 78.13 58.53 19.74 79.79 76.61 58.98 34.44 79.78 

STFT, PGBM 64.65 68.76 64.71 92.39 82.25 80.88 64.71 23.64 82.25 79.66 64.29 39.71 82.43 

Wavelet, PGBM 60.91 65.43 60.92 91.21 80.43 78.95 61.21 21.01 80.46 77.43 60.64 35.84 80.45 

HHT, PGBM 60.36 64.87 60.35 90.93 79.94 78.70 61.27 20.78 80.18 77.14 59.91 35.32 80.24 

MFCC, PGBM 59.48 64.17 59.60 90.59 79.38 78.22 59.27 19.97 79.83 76.55 58.93 34.36 79.73 

STFT, ScatNet-2 65.45 69.45 65.52 92.60 82.56 81.43 64.97 24.31 82.83 80.01 65.34 40.41 82.65 

Wavelet, ScatNet-2 60.13 64.70 60.11 90.92 80.00 78.46 60.29 20.38 80.00 77.09 60.12 35.29 80.15 

HHT, ScatNet-2 61.33 65.76 61.23 91.41 80.82 79.23 61.68 21.36 80.72 77.68 61.63 36.35 80.56 

MFCC, ScatNet-2 59.93 64.50 59.89 90.85 79.89 78.44 59.46 20.20 80.05 76.91 60.37 35.09 79.88 

STFT, RandNet-2 65.51 69.49 65.54 92.63 82.62 81.44 65.97 24.51 82.75 80.09 65.07 40.51 82.79 

Wavelet, RandNet-2 60.51 65.05 60.50 91.06 80.21 78.60 60.56 20.56 80.13 77.37 60.53 35.74 80.40 

HHT, RandNet-2 60.69 65.19 60.64 91.15 80.37 78.90 60.54 20.83 80.46 77.28 61.02 35.70 80.21 

MFCC, RandNet-2 59.27 64.01 59.28 90.71 79.76 78.05 58.87 19.73 79.68 76.46 59.36 34.32 79.54 

STFT, LDANet-2 65.56 69.57 65.59 92.72 82.83 81.48 65.63 24.50 82.83 80.05 65.32 40.49 82.71 

Wavelet, LDANet-2 61.24 65.68 61.24 91.27 80.48 79.15 61.44 21.24 80.65 77.64 61.09 36.20 80.62 

HHT, LDANet-2 61.52 65.97 61.44 91.52 81.04 79.30 61.97 21.48 80.77 77.78 61.67 36.50 80.68 

MFCC, LDANet-2 59.52 64.16 59.50 90.71 79.68 78.17 59.38 19.94 79.76 76.69 59.61 34.67 79.77 

STFT, SQNet 66.54 70.39 66.55 92.95 83.19 81.92 66.74 25.24 83.21 80.74 66.30 41.75 83.34 

Wavelet, SQNet 61.79 66.22 61.84 91.48 80.82 79.43 61.54 21.52 80.95 77.91 61.59 36.67 80.85 

HHT, SQNet 60.34 64.97 60.30 91.17 80.54 78.56 60.17 20.44 80.12 77.13 60.58 35.43 80.12 

MFCC, SQNet 60.05 64.62 59.99 90.93 80.06 78.55 60.85 20.57 80.05 76.92 59.91 35.02 79.98 

STFT, MBNet-2 64.98 69.02 65.07 92.41 82.19 81.09 64.43 23.82 82.50 79.85 64.82 40.10 82.56 

Wavelet, MBNet-2 61.68 66.09 61.72 91.40 80.64 79.41 61.32 21.46 80.94 77.85 61.62 36.59 80.77 

HHT, MBNet-2 61.18 65.61 61.10 91.31 80.63 79.13 61.04 21.14 80.66 77.61 61.62 36.26 80.50 

MFCC, MBNet-2 59.89 64.52 59.89 90.87 79.95 78.35 60.11 20.25 79.89 76.92 59.80 35.00 80.00 

STFT, GPNet 64.24 68.39 64.17 92.42 82.46 80.65 64.30 23.31 82.04 79.45 64.61 39.43 82.12 

Wavelet, GPNet 60.91 65.51 61.02 91.23 80.46 78.83 60.72 20.80 80.37 77.47 60.41 35.86 80.54 

HHT, GPNet 61.04 65.51 61.01 91.24 80.49 78.98 61.17 21.02 80.49 77.58 61.09 36.13 80.55 

MFCC, GPNet 60.23 64.79 60.22 90.94 80.00 78.65 60.54 20.60 80.19 77.01 60.08 35.18 80.06 
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OVID-19 via cough signals is in its infancy, so there is still ample work

o be done to find what features are more discriminating for this task. 

We employed evolutionary algorithms to optimize the architecture

f CNNs and in the training phase of these algorithms. The fitness in the

ptimization process suffers from uncertainty (known as approximation

ncertainty [87] ). For example, for the optimization of the CNN archi-

ecture, in order to calculate the fitness, the CNN with the architecture

s trained and tested on the data and the accuracy is measured as the

tness. Because the training and testing process is not deterministic, the

easured fitness suffers from uncertainty. This uncertainty affects the

ptimization process and should be managed. 
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